Erwin Harahap
Prodi Matematika, Fakultas MIPA

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Perbandingan Metode Mean-Semivariance dan Mean Absolute Deviation Untuk Menentukan Portfolio Optimal Menggunakan Python Bilqis Khairun Nisa; Onoy Rohaeni; Erwin Harahap
Bandung Conference Series: Mathematics Vol. 3 No. 2 (2023): Bandung Conference Series: Mathematics
Publisher : UNISBA Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29313/bcsm.v3i2.8549

Abstract

Abstrak. Investasi merupakan kegiatan menanamkan modal dengan tujuan mendapatkan keuntungan. Salah satu investasi pada aset keuangan yaitu investasi saham. Saham merupakan investasi yang berisiko tinggi karena harga saham yang fluktuatif. Untuk menghindari risiko yang akan mempengaruhi return saat berinvestasi, maka perlu membentuk portofolio optimal. Portofolio optimal merupakan portofolio yang memberikan return maksimum dan memiliki risiko minimum. Pada penelitian ini dibahas mengenai pembentukan portofolio optimal dengan menggunakan metode Mean Semivariance dan Mean Absolute Deviation. Dari hasil perhitungan pada penelitian ini metode Mean Semivariance memperoleh return sebesar 0.0035% dan risiko sebesar 0.080518%. Sedangkan dengan menggunakan metode Mean Absolute Deviation diperoleh return sebesar 0.000273% dan risiko sebesar 0.022276%. Abstract. Investment is an investment activity with the aim of making a profit. One of the investments in financial assets is stock investment. Stocks are a high-risk investment because stock prices fluctuate. To avoid risks that will affect returns when investing, it is necessary to form an optimal portfolio. Optimal portfolio is a portfolio that provides maximum return and has minimum risk. This study discusses the formation of an optimal portfolio using the Mean Semivariance and Mean Absolute Deviation methods. From the calculation results in this study the Mean Semivariance method obtained a return of 0.0035% and a risk of 0.080518%. Meanwhile, using the Mean Absolute Deviation method, a return of 0.000273% and a risk of 0.022276% are obtained.
Implementasi Sistem Pendukung Keputusan Pemilihan Menu Makanan Terbaik untuk Penderita Gastroesophageal Reflux Disease (Gerd) dengan Menggunakan Metode Topsis Devie Ratna Mutia; Erwin Harahap; Didi Suhaedi
Bandung Conference Series: Mathematics Vol. 3 No. 2 (2023): Bandung Conference Series: Mathematics
Publisher : UNISBA Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29313/bcsm.v3i2.8562

Abstract

Abstrak. Sistem pendukung keputusan (SPK) merupakan penerapan sistem informasi yang dirancang untuk membantu pengguna dalam mengambil keputusan dengan menggunakan model matematis. Dalam SPK terdapat metode Multiple Criteria Decision Making (MCDM), suatu metode digunakan untuk pengambilan keputusan dalam situasi di mana beberapa kriteria yang dipertimbangkan dalam waktu bersamaan. MCDM memiliki beberapa metode yang sudah banyak dikembangkan, salah satunya metode Topsis. Penelitian ini dilakukan untuk memanfaatkan SPK pada pemilihan menu makanan terbaik dengan metode Topsis, untuk membantu penderita Gastroesophageal Reflux Disease (GERD). Menu makanan sangat penting ditentukan untuk penderita GERD, salah satunya dalam kandungan gizi yang terdapat pada makanan. Kandungan lemak, asam, gas, dan kafein yang berlebihan merupakan kandungan yang dapat memicu terjadinya GERD. Sehingga dapat diperoleh menu makanan setiap kelompok dari hasil nilai preferensi dan pemeringkatan, kelompok menu makanan pokok peringkat tertinggi yaitu Nasi Merah dan peringkat terendah Nasi Pecel, kelompok menu sayuran peringkat tertinggi Tumis Tauge dan peringkat terendah Gudeg. Kelompok menu lauk pauk peringkat tertinggi Ikan Panggang dan peringkat terendah Rawon, kelompok menu dessert peringkat tertinggi Jasuke dan peringkat terendah Brownies. Kelompok menu minuman peringkat tertinggi Jus Melon dan peringkat terendah Teh Botol. Jika dilihat dari kriteria, nilai preferensi dan hasil pemeringkatan tertinggi memiliki nilai kandungan lemak, asam, gas, dan kafein yang sangat rendah. Abstract. Decision support systems (DSS) are the implementation of information systems designed to assist users in making decisions using mathematical models. In SPK there is the Multiple Criteria Decision Making (MCDM) method, a method used for decision making in situations where several criteria are considered at the same time. MCDM has several methods that have been developed, one of which is the Topsis method. This research was conducted to utilize DSS in choosing the best food menu using the Topsis method, to help sufferers of Gastroesophageal Reflux Disease (GERD). The food menu is very important to determine for GERD sufferers, one of which is the nutritional content found in food. Excessive fat, acid, gas and caffeine content are ingredients that can trigger GERD. So that the food menu for each group can be obtained from the preference value and ranking results, the staple food menu group with the highest rank is Red Rice and the lowest rank is Nasi Pecel, the vegetable menu group has the highest rank Tumis Bean Sprouts and the lowest rank is Gudeg. The side dish menu group has the highest rank Grilled Fish and Rawon the lowest rank, Dessert menu group has the highest rank Jasuke and Brownies the lowest rank. The drink menu group has the highest rating Melon Juice and the lowest rating is Botol Tea. When viewed from the criteria, the preference value and the highest rating results have very low fat, acid, gas and caffeine content values.