This Author published in this journals
All Journal Sinergi
Osamah Ibrahim Khalaf
Department of Solar, Al-Nahrain Research Center for Renewable Energy, Al-Nahrain University

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Optimized Swarm Enabled Deep Learning Technique for Bone Tumor Detection using Histopathological Image Dama Anand; Osamah Ibrahim Khalaf; Fahima Hajjej; Wing-Keung Wong; Shin-Hung Pan; Gogineni Rajesh Chandra
SINERGI Vol 27, No 3 (2023)
Publisher : Universitas Mercu Buana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22441/sinergi.2023.3.016

Abstract

Cancer subjugates a community that lacks proper care. It remains apparent that research studies enhance novel benchmarks in developing a computer-assisted tool for prognosis in radiology yet an indication of illness detection should be recognized by the pathologist. In bone cancer (BC), Identification of malignancy out of the BC’s histopathological image (HI) remains difficult because of the intricate structure of the bone tissue (BTe) specimen. This study proffers a new approach to diagnosing BC by feature extraction alongside classification employing deep learning frameworks. In this, the input is processed and segmented by Tsallis Entropy for noise elimination, image rescaling, and smoothening. The features are excerpted employing Efficient Net-based Convolutional Neural Network (CNN) Feature Extraction. ROI extraction will be employed to enhance the precise detection of atypical portions surrounding the affected area. Next, for classifying the accurate spotting and for grading the BTe as typical and a typical employing augmented XGBoost alongside Whale optimization (WOA). HIs gathering out of prevailing scales patients is acquired alongside texture characteristics of such images remaining employed for training and testing the Neural Network (NN). These classification outcomes exhibit that NN possesses a hit ratio of 99.48 percent while this occurs in BT classification.