Dian Nursantika
Jurusan Teknik Informatika, Fakultas Sains dan Teknologi Universitas Islam Negeri Sunan Gunung Djati Bandung

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Analisis Kinerja Kompresi Citra Digital dengan Komparasi DWT, DCT dan Hybrid (DWT-DCT) Aditya Mahmud Faza; Cepy Slamet; Dian Nursantika
JOIN (Jurnal Online Informatika) Vol 1 No 1 (2016)
Publisher : Department of Informatics, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/join.v1i1.3

Abstract

Penelitian ini merupakan penelitian tentang penerapan transformasi diskrit kosinus (DCT), transformasi wavelet diskrit (DWT), dan hybrid sebagai penggabungan dari kedua transformasi sebelumnya dalam proses kompresi data citra digital. Proses kompresi dilakukan untuk menekan konsumsi sumber daya memory, mempercepat proses transmisi citra digital. Proses kompresi yang dilakukan dapat menghasilkan nilai mean square, peak signal to noise ratio dan waktu yang dibutuhkan untuk proses kompresi dari masing-masing transformasi. Nilai tersebut sebagai parameter untuk tahap komparasi kompresi sehingga pengguna dapat menentukan kinerja kompresi dari setiap transformasi dan dapat menentukan jenis transformasi yang paling baik digunakan untuk proses citra digital.
Sistem Klasifikasi Jenis Tanaman Hias Daun Philodendron Menggunakan Metode K-Nearest Neighboor (KNN) Berdasarkan Nilai Hue, Saturation, Value (HSV) Dani Syahid; Jumadi Jumadi; Dian Nursantika
JOIN (Jurnal Online Informatika) Vol 1 No 1 (2016)
Publisher : Department of Informatics, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/join.v1i1.6

Abstract

Tanaman hias daun biasa digunakan untuk mempercantik halaman pekarangan rumah dengan aneka warna yang indah pada tanaman hias daun ini menjadi bahan perhatian khususnya bagi pecinta tanaman. Namun dengan banyaknya jenis tanaman hias membuat kita sulit untuk mengetahui nama tumbuhan yang kita minati.Sistem pendeteksi citra tanaman hias daun bekerja dengan cara membandingkan data citra latih yang telah tersimpan pada database terhadap data citra yang akan diuji. Data citra uji akan diklasifikasikan dengan menggunakan penerapan metode K-Nearest Neighboor yaitu berfungsi untuk menghitung jarak terdekat antara data citra latih dan data citra uji pada setiap pikselnya. Setiap piksel pada citra akan dilakukan proses konversi red, Green, Blue (RGB) ke dalam ekstraksi fitur warna hue, saturation, value (HSV) terlebih dahulu. Setelah didapat nilai HSV, maka dilakukan proses klasifikasi menggunakan metode KNN. Data sampel pada penelitian ini menggunakan 5 klasifikasi citra data latih dengan 10 data citra  uji pada setiap data citra latih. Pada penelitian ini, diperoleh hasil dari akurasi sistem pendeteksi citra tanaman dengan hasil mencapai 92%.
Perbandingan Metode Cosine Similarity Dengan Metode Jaccard Similarity Pada Aplikasi Pencarian Terjemah Al-Qur’an Dalam Bahasa Indonesia Ogie Nurdiana; Jumadi Jumadi; Dian Nursantika
JOIN (Jurnal Online Informatika) Vol 1 No 1 (2016)
Publisher : Department of Informatics, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/join.v1i1.12

Abstract

Todays there are more applications supporting Alqurán to facilitate such a study, which could be called digital AL-Quran. But when using applications digital AL-Quran, which has many applications users experience difficulties when searching for a word that users want.This occurs when users misspell a word you want to search and applications that are not yet able to identify or justify the wrong word. In this thesis made the information retrieval system that is used to find information that is relevant to the needs of its users automatically based on conformity to the query of a collection of information.Algoritma used to determine the similarity (degree of similarity) or relevant similarity algoritma, cosine, Jaccard, and nearest neighbor (k-nn) for comparing algoritma that are more relevant to the translation application alquran. The test result proves that the cosine similarity algoritma has the highest value with the percentage of 41% compared with Jaccard 19% algoritma and nearest neighbor (k-nn) 40% on translation of AL-Quran as much 6326 document and 33 query different experiments.