Siti Nor Farhana Zakaria
Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah,

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Effect of Eco-Processed Pozzolan (EPP) Mixed with Calcium Oxide to Dry Density and Physicochemical of Peat Soil Habib Musa Mohamad; Mohd Suharmin James; Siti Nor Farhana Zakaria; Adriana Erica Amaludin; Ngui Min Fui Tom; Adnan Zainorabidin
Civil Engineering Journal Vol 9, No 7 (2023): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-07-011

Abstract

Peat is a problematic soil, and it is a common problem faced by engineers in construction. The characteristics that have been noted before are high moisture content, poor shear strength, great compressibility, and long-term settlement. For this research study, it focuses on stabilizing peat soil using EPP and CaO. There are three main tests that were conducted in this research study: index properties testing, compaction testing, and For Index Properties testing, five (5) experiments were conducted to study the index properties of disturbed peat soil, which are moisture content, fiber content, liquid limit, organic content, pH, and specific gravity. Next, for the Compaction Test, using a 4.5 kg rammer, define the optimum mixture of stabilizer that is mixed with different volumes of 5%, 10%, 15%, and 20% of stabilizer. In this study, the expected result is to inspire an in-depth study of the use of EPP material and chemical CaO as peat soil stabilizers for better utilization of problematic soil. The main finding was that the mixture with the exact amount of moisture, EPP, and CaO helped stabilize the soil and cure peat soil. Thus, this study confirms the idea of treating peat with EPP and CaO, enhancing the properties of peat soil, and sustaining the settlement over loading for a period of time accordingly. 20% mix of EPP and CaO produces the highest dry density, showing that dry density increases linearly with the amount of mixture to stabilize peat. The crystallization process between peat and EPP was pronouncedly observed where smaller particles identified as EPP filled the gaps in between the pores identified from SEM. The silicon (Si content developed from each spectrum ranged from 14.4% to 17.7%. The EDX results show significant results where mineral crystallization occurred in the coagulation process. Doi: 10.28991/CEJ-2023-09-07-011 Full Text: PDF
Characteristic and Physicochemical Properties of Peat Soil Stabilized with Sodium Hydroxide (NaOH) Habib Musa Mohamad; Mohd Fahmie Izzudin Sharudin; Adriana Erica Amaludin; Siti Nor Farhana Zakaria
Civil Engineering Journal Vol 9, No 9 (2023): September
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-09-09

Abstract

Peat in various phases of decomposition has poor shear strength and high compressive deformation. For this research study, it will focus on stabilizing peat soil using NaOH. There are two main tests that were conducted in this research study, which are index property testing and the compaction test. For index property testing, there were six (6) experiments conducted to study the index properties of disturbed peat soil, which are moisture content, fiber content, organic content, liquid limit, pH, and specific gravity. Then, for the compaction test, a 4.5kg rammer was used to determine the best mixture of stabilizer blended with different volumes of 5%, 7%, and 9% stabilizer. The desired outcome of this study is to stimulate further research into the use of the chemical NaOH as a peat soil stabilizer for improved soil usage. 7% and 9% of NaOH only have a slightly different percentage, and it can be concluded that this was the optimum percentage of NaOH as a chemical stabilizer for peat soil. It can be seen clearly that 5% is the higher dry density with a lesser moisture content of the peat. When the percentage of NaOH was increased, the graph pattern also changed. NaOH has been observed as an alteration agent for peat soil dry density. It can be seen clearly that 5% NaOH is the higher dry density of the peat with the lesser moisture content and is suitable as a peat soil stabilizer. The increment of oxygen content recorded changes from 13.3% to 23%, while the sodium (Na) content decreased significantly with the increment of oxygen (O). Sodium content decreased from 8.7% for untreated specimens to 4.5% and 5.5% when peat was treated with NaOH, with 5% of NaOH and 9% of NaOH. Doi: 10.28991/CEJ-2023-09-09-09 Full Text: PDF