Borvorn Israngkura Na Ayudhya
Department of Civil Engineering, Rajamangala University of Technology Thanyaburi, Pathum Thani, 12110,

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Effect of Curing Temperature on Mechanical Properties of Sanitary Ware Porcelain based Geopolymer Mortar Woratid Wongpattanawut; Borvorn Israngkura Na Ayudhya
Civil Engineering Journal Vol 9, No 8 (2023): August
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-08-01

Abstract

The objective of this study was to investigate the effect of curing temperature on the mechanical properties of sanitary ware porcelain powder-based geopolymer paste and mortar under various curing temperatures. The setting time, porosity, water absorption, and compressive strength of specimens mixed with alkaline concentrations of 8M, 10M, 12M, and 14M were compared. All mortar cube (50×50×50 mm) specimens were placed into drying ovens for 24 hours at 60°C, 75°C, 90°C, and 105°C, respectively. The specimens were then air-cured for 1, 3, 7, 14, and 28 days. The results showed that the elevated curing temperature accelerated the polymerization process of the porcelain geopolymerization reaction. The setting time varied between 89 mins and 380 mins. It showed variability depending on alkaline concentration and initial curing temperature. The setting time of pastes decreased when alkaline concentrations increased. An increasing temperature in the drying oven decreased the initial and final setting times. Similar to this, the rate of water absorption and permeability of porcelain-based geopolymer mortar specimens decreased with drying oven temperatures and increments in alkaline concentration. The lowest water absorption and porosity of the specimen were 2.1% and 15.7%, respectively. The compressive strength increased as drying oven temperatures and alkaline concentrations increased. The highest 28 day compressive strength was found in 14M specimens with 105°C curing temperatures. The ultimate compressive strength was 64.45 N/mm2. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were investigated to study the microstructural properties of the geopolymers. Doi: 10.28991/CEJ-2023-09-08-01 Full Text: PDF
Optimizing Alkali-Concentration on Fresh and Durability Properties of Defected Sanitary Ware Porcelain based Geopolymer Concrete Woratid Wongpattanawut; Borvorn Israngkura Na Ayudhya
Civil Engineering Journal Vol 10, No 4 (2024): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-04-05

Abstract

Introducing defective sanitaryware porcelain as a low-calcium binder for geopolymer mix concrete was regarded as green concrete. Four alkali concentrations (8M, 10M, 12M, and 14M) mixes involving four initial curing temperatures (60°C, 75°C, 90°C, and 105°C) were investigated for porosity, rapid chloride penetration, compressive and abrasive resistance. Tests on geopolymer paste for consistency and initial and final setting times were also assessed. For all the mixes, consistency and setting time decreased with increased alkali concentration levels. An increment in curing temperature increased the setting time rate. Microstructural studies such as X-ray fluorescence analysis (XRF), X-ray diffraction (XRD), and scanning electron microscopy (SEM) were carried out, and the results were presented. The compressive and abrasive resistance of the specimen performance increased with an increase in the initial curing temperature and alkali concentration level. Majorly, the mechanical strength of porcelain-based geopolymer specimens increased by increasing the alkali concentration level. Applying 105°C for the initial curing temperature to the specimen, compressive strength, abrasive resistance, and resistibility to chloride ingress of the specimen enhanced. At the 28-days curing period, the ultimate compressive strength was 68.03 N/mm2, the lowest weight loss from abrasive motion was 0.09%, and the lowest passing charge was 1,440.91 coulombs were recorded respectively. As a result, porcelain-based geopolymers required a high initial curing temperature and a high alkali concentration level. It was found that 14M porcelain-based specimens heated at 105°C curing temperature for 24 hours led to an eco-friendly concrete mix with prominent positive results for engineering properties. Doi: 10.28991/CEJ-2024-010-04-05 Full Text: PDF