Muhammad Bilal Rafif Azaki
Telkom University

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Movie Recommender System Using Decision Tree Method Muhammad Bilal Rafif Azaki; Z. K. A. Baizal
JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) Vol 8, No 3 (2023)
Publisher : STKIP PGRI Tulungagung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29100/jipi.v8i3.3867

Abstract

In this modern era, many things that can be done online, one of which is watching movies. When the number of movies increases, people often find it difficult to decide which movie to watch next. To solve this problem, a useful recommendation system was developed to find movies that one might like based on movies that have been watched before. This research develops a movie recommendation system using Collaborative Filtering (CF) with the Decision Tree algorithm. In this study, the data used were movie data and ratings obtained from the grouplens.org website. Then the movielens dataset is filtered and only saves movies with a rating of more than 50 that are used in the recommendation system. In this study, Mean Absolute Error (MAE) is used as a method to assess the accuracy of the movie recommendation system. Based on the research that has been done, Decision Tree gets better results with an MAE value of 0,942 compared to Collaborative Filtering with an MAE value of 1,242.