Nyoman Juniarta, Nyoman
Departemen Informatika, Fakultas Teknologi Informasi dan Komunikasi, Institut Teknologi Sepuluh Nopember

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

PENGGALIAN INFORMASI MENGGUNAKAN MODEL TERDEKOMPOSISI: APLIKASI PADA RISET PENEMUAN ANTIBIOTIK Juniarta, Nyoman
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 16, No. 1, Januari 2018
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v16i1.a677

Abstract

Penemuan obat-obatan antibiotik adalah salah satu tantangan pada bidang kemoinformatika. Dibutuhkan antibiotik baru secara cepat dan efektif karena banyak bakteri menjadi kebal terhadap antibiotik lama. Molekul-molekul kimia yang tersimpan di beberapa perusahaan dan laboratorium menyediakan kandidat yang berpotensi sebagai antibiotik baru. Tetapi, terlalu banyak kandidat yang harus diteliti. Untuk mengatasinya, dibutuhkan pencarian informasi yang dapat mendeteksi kandidat-kandidat penting melalui atribut mereka. Jumlah atribut tersebut sangatlah besar. Tujuan penelitian ini adalah mempelajari atribut-atribut tersebut dan menentukan atribut yang penting, dengan kata lain, untuk mereduksi dimensi data molekul. Fokus penelitian ini ditujukan pada molekul-molekul antibiotik yang sudah ada di pasaran, dengan sekitar 500 atribut yang diperoleh dari penelitian sebelumnya. Sebagai prosedur seleksi fitur, penelitian ini menggunakan analisis log-linear untuk menemukan asosiasi di antara atribut. Karena jumlah atribut mencapai ratusan, maka digunakan Chordalysis yang bekerja pada model log-linear yang bisa didekomposisi. Penelitian ini menemukan bahwa atribut-atribut dari penelitian sebelumnya memiliki beberapa asosiasi. Dengan demikian, beberapa atribut yang redundan dapat dieliminasi.
COMPARISON OF NAÏVE BAYES AND K-NEAREST NEIGHBOR MODELS FOR IDENTIFYING THE HIGHEST PREVALENCE OF STUNTING CASES IN EAST JAVA Herlambang, Teguh; Asy'ari, Vaizal; Rahayu, Ragil Puji; Firdaus, Aji Akbar; Juniarta, Nyoman
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 18 No 4 (2024): BAREKENG: Journal of Mathematics and Its Application
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol18iss4pp2153-2164

Abstract

Indonesia will experience a demographic bonus in 2030, where the productive age group will dominate the population and become a buffer for the economy. However, this potential is in vain if human resources experience stunting. According to WHO (2015), stunting is a disorder of child growth and development due to chronic malnutrition and repeated infections, characterized by below-standard length or height. Based on the background of the problem, the author wants to compare the prediction of the prevalence of the highest stunting cases in East Java using the Naive Bayes method and the K-Nearest Neighbor method. The stages carried out in this study are data collection, initial data processing, advanced data processing using the Naïve Bayes Method and K-Nearest Neighbor, and comparative analysis. The results of the implementation of the Naïve Bayes and K-Nearest Neighbor methods are in the form of stunting prevalence prediction charts with variables that affect LBW and TTD. The results of simulations conducted in 6 regions, the Naive Bayes method gets the highest accuracy value of 83.33% in simulation one and 66.67%. The smallest RMSE value is 0.382 simulation 1 and 0.469 simulation 2. This shows that the Naive Bayes method can predict well.