Kusrini Kusrini
Dept. of Information Technology, Universitas Amikom Yogyakarta,

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

The Effect of Data Augmentation in Deep Learning with Drone Object Detection Ariel Yonatan Alin; Kusrini Kusrini; Kumara Ari Yuana
IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Vol 17, No 3 (2023): July
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijccs.84785

Abstract

 Drone object detection is one of the main applications of image processing technology and pattern recognition using deep learning. However, the limited drone image data that can be accessed for training detection algorithms is a challenge developing drone object detection technology. Therefore, many studies have been conducted to increase the amount of drone image data using data augmentation techniques. This study aims to evaluate the effect of data augmentation on deep learning accuracy in drone object detection using the YOLOv5 algorithm. The methods used in this research include collecting drone image data, augmenting data with rotate, crop, and cutout, training the YOLOv5 algorithm with and without data augmentation, as well as testing and analyzing training results.The results of the study show that data augmentation can't improve the accuracy of the YOLOv5 algorithm in drone object detection. Evidenced by the decreasing value of precision and mAP@0.5 and the relatively constant value of recall and F-1 score. This is caused by too much augmentation, which can cause a loss of important information in the data and cause noise or distortion.