Claim Missing Document
Check
Articles

Found 3 Documents
Search

CLUSTERING K-MEANS UNTUK ANALISIS POLA PERSEBARAN BENCANA ALAM DI INDONESIA M Aditya Yoga Pratama; Agus Rahmad Hidayah; Tertia Avini
Jurnal Informatika Dan Tekonologi Komputer (JITEK) Vol. 3 No. 2 (2023): Juli : Jurnal Informatika dan Teknologi Komputer
Publisher : Pusat Riset dan Inovasi Nasional

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55606/jitek.v3i2.1506

Abstract

Data clustering plays a crucial role in data analysis for identifying hidden patterns, trends, and structures within the data. The K-Means algorithm has gained popularity as a widely used method for data clustering due to its efficiency and ease of implementation. Clustering is a data analysis technique utilized to group similar objects together. The K-Means algorithm stands out as one of the most renowned and frequently employed clustering methods across various fields, including data science, pattern recognition, and artificial intelligence. In this research, we collected data on natural disasters from different regions in Indonesia and employed it as input for the K-Means clustering algorithm. K-Means was utilized to cluster the similarity patterns within the occurring natural disasters. The clustering results provide information about groups that may exhibit similar characteristics and disaster risks.
Sistem Informasi Pengolahan Data Inventory Barang Pada Toko Penta Komputer Nur Aisyah; Dian Adi Saputra; Tertia Avini
Jurnal Nasional Komputasi dan Teknologi Informasi (JNKTI) Vol 6, No 4 (2023): Agustus 2023
Publisher : Program Studi Teknik Komputer, Fakultas Teknik. Universitas Serambi Mekkah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32672/jnkti.v6i4.6365

Abstract

Abstrak - Pertumbuhan teknologi, seperti di bidang teknologi dan informasi, dapat mendukung produksi informasi yang lebih akurat dari pada dihasilkan dengan secara manual kepada penggunanya. Teknologi informasi dapat digunakan untuk membuat sistem informasi, misalnya untuk membuat sistem informasi inventaris (inventory) dan penjualan. Sistem inventory yang ada pada toko penta komputer saat ini belum terkomputerisasi, transaksi keluar masuk barang masih tercatat dalam berkas yang berantakan sehingga sering menimbulkan kerusakan dan kehilangan. Dengan adanya sistem informasi yang telah terkomputerisasi dapat mempermudah karyawan dalam mencatat transaksi keluar masuk barang, serta dapat menghasilkan laporan inventaris yang lebih akurat. Pada artikel ini, penulis menggunakan metode waterfall. Aplikasi ini menggunakan MySQL sebagai databasenya dan pemrograman PHP untuk membangun sistem informasinya. Sistem dapat membantu dalam pembuatan laporan inventory barang masuk dan keluar.Kata kunci: MySQL, PHP, Sistem Informasi , Inventory, Waterfall Abstract - Technological growth, such as in the field of technology and information, can support the production of information that is more accurate than manually generated for users. Information technology can be used to create information systems, for example to create inventory and sales information systems. The existing inventory system at the Penta computer store is currently not computerized, transactions in and out of goods are still recorded in messy files that often cause damage and loss. With a computerized information system, it can make it easier for employees to record transactions in and out of goods, and can produce more accurate inventory reports. In this article, the author uses the waterfall method. This application uses MySQL as its database and PHP programming to build its information system. The system can assist in making inventory reports of incoming and outgoing goods.Keywords: MySQL, PHP, Information System, Inventory, Waterfall
CLUSTERING K-MEANS UNTUK ANALISIS POLA PERSEBARAN BENCANA ALAM DI INDONESIA M Aditya Yoga Pratama; Agus Rahmad Hidayah; Tertia Avini
Jurnal Informatika Dan Tekonologi Komputer (JITEK) Vol. 3 No. 2 (2023): Juli : Jurnal Informatika dan Teknologi Komputer
Publisher : Pusat Riset dan Inovasi Nasional

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55606/jitek.v3i2.1506

Abstract

Data clustering plays a crucial role in data analysis for identifying hidden patterns, trends, and structures within the data. The K-Means algorithm has gained popularity as a widely used method for data clustering due to its efficiency and ease of implementation. Clustering is a data analysis technique utilized to group similar objects together. The K-Means algorithm stands out as one of the most renowned and frequently employed clustering methods across various fields, including data science, pattern recognition, and artificial intelligence. In this research, we collected data on natural disasters from different regions in Indonesia and employed it as input for the K-Means clustering algorithm. K-Means was utilized to cluster the similarity patterns within the occurring natural disasters. The clustering results provide information about groups that may exhibit similar characteristics and disaster risks.