Claim Missing Document
Check
Articles

Found 2 Documents
Search

Modifikasi Algoritme J-Bit Encoding untuk Meningkatkan Rasio Kompresi Johanes K.M. Lobang; Pranowo; Suyoto
Jurnal Nasional Teknik Elektro dan Teknologi Informasi Vol 6 No 1: Februari 2017
Publisher : Departemen Teknik Elektro dan Teknologi Informasi, Fakultas Teknik, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (884.831 KB)

Abstract

J-bit encoding is a lossless data compression algorithm that manipulates each bit of file data in order to minimize the size by dividing data into two outputs and combining data into two outputs. This research proposes a modification of the J-bit Encoding algorithm by eliminating zero and one symbols of the first output. As a result, the first output will contain the original data without zero and one symbols and the second output will contain the value of two bits that describe the position of zero, one, and byte besides zero and one. The two algorithms are compared by testing four scheme combination algorithms, which are (i) Burrows-Wheeler transformation, Move to Front, J-Bit Encoding, and arithmetic coding, (ii) Burrows-Wheeler transformation, Move to Front, modification of the J-bit Encoding, and arithmetic coding, (iii) Burrows-Wheeler transformation, Move One From Front, J-Bit encoding, and arithmetic coding, (iv) Burrows-Wheeler transformation, Move One From Front, modification of the J-bit Encoding, and arithmetic coding. By using the Calgary Corpus and Canterbury Corpus data sets, the test results show that the best compression ratio is obtained by using a second scheme on average. On the other hand, by using four image files, the test results show that the best compression ratio is obtained by using a fourth scheme on average.
Pemodelan Awal Ground Penetrating Radar dengan Metode Discontinuous Galerkin dan PML Berenger Pranowo
Jurnal Nasional Teknik Elektro dan Teknologi Informasi Vol 5 No 2: Mei 2016
Publisher : Departemen Teknik Elektro dan Teknologi Informasi, Fakultas Teknik, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1560.896 KB)

Abstract

This paper discusses the development of Discontinuous Galerkin method, which has both linear shape function and weight function, for modeling Ground Penetrating Radar (GPR) in heterogeneous media. The triangular meshes are used due to their flexibility to deal with complex geometries. The Berenger Perfectly Matched Layer (PML) is used as absorbing boundary condition at the truncation boundaries. The numerical results of the DG method are compared with the exact solutions and the numerical results of FDTD method and the comparisons show that DG method has better accuracy than FDTD method and more stable for long time simulation. The simulation results of GPR show that the PML works well. Propagating waves at the edge of absorbing boundaries can be suppressed without any significant reflection. The results also show that various waves e.g., transmission waves, reflection waves, and diffraction waves produced by heterogeneous material can be simulated well.