This Author published in this journals
All Journal Jurnal INFOTEL
Nanda Yonda Hutama
Telkom University

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Analisis Teks Pelamar Untuk Klasifikasi Kepribadian Menggunakan Multinomial Naïve Bayes dan Decision Tree Nanda Yonda Hutama; Kemas Muslim Lhaksmana; Isman Kurniawan
JURNAL INFOTEL Vol 12 No 3 (2020): August 2020
Publisher : LPPM INSTITUT TEKNOLOGI TELKOM PURWOKERTO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20895/infotel.v12i3.505

Abstract

Employees' qualities affect companies' performances and with a large number of applicants, it's difficult to find suitable applicants. To help with it, companies carry out psychological tests to know applicants' personalities, since personality's considered to have a relationship with work performances. But psychological testing requires a lot of effort, cost, and human resources. Thus with a system that can classify personalities through text can help reduce the effort needed. Similar studies carried out with the big five personalities as the theoretical basis and used one of the personality traits, namely using the k-NN method with 65% accuracy. Based on these studies, accuracy can improve by finding the best parameters using all of the big five personalities. This research is conducted based on the big five personality traits and related traits, namely consciousness and agreeableness. The data used is text data that's been labelled, pre-processed and feature selected. The clean text data is used to create a classification model using multinomial Naive Bayes and decision trees. There are 6 models built based on 3 work cultures, decision tree with an accuracy of 33%, 66%, 80%, and multinomial naïve Bayes with an accuracy of 83%, 50%, 60%, which resulted as better performance.