Adnan Ibrahim
Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search

Energy performance evaluation of a photovoltaic thermal phase change material (PVT-PCM) using a spiral flow configuration Muhammad Syazwan Bin Aziz; Adnan Ibrahim; Muhammad Amir Aziat Bin Ishak
International Journal of Renewable Energy Development Vol 12, No 5 (2023): September 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.56052

Abstract

A relatively new technology, a hybrid photovoltaic thermal (PVT) solar collector, allows for producing electrical and thermal energy.  However, the module heats up more when exposed to sunlight thanks to the PVT collector's incorporation, reducing its efficiency.  Consequently, lowering the operating temperature is crucial for maximizing the system's effectiveness.  This research aims to create a photovoltaic thermal phase change material (PVT-PCM) solar collector and evaluate its energy performance through a controlled laboratory environment.  Two different PVT collector designs, one using water and the other using a phase change material (PCM), were evaluated using a spiral flow configuration.  Under a sun simulator, the PVT solar collector was subjected to 400 W/m2, 600 W/m2, and 800 W/m2 of solar irradiation at three different mass flow rates.  The results showed that under 800 W/m2 of solar irradiation and 0.033 kg/s mass flow rate, the collector using water could only reach an overall maximum efficiency of 64.34 %, whereas the PVT-PCM configuration with spiral flow had the maximum performance, with an overall efficiency of 67.63%.
Enhancing the performance of water-based PVT collectors with nano-PCM and twisted absorber tubes Anwer B. Al-Aasama; Adnan Ibrahim; Ubaidah Syafiq; Kamaruzzaman Sopian; Bassam M. Abdulsahib; Mojtaba Dayer
International Journal of Renewable Energy Development Vol 12, No 5 (2023): September 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.54345

Abstract

The study investigated the thermal performance of a photovoltaic thermal (PVT) collector with a twisted absorber tube and nanoparticle-enhanced phase change material (nano-PCM). The PVT collector consisted of twisted absorber tubes, a container filled with nano-PCM, and a photovoltaic (PV) panel. To assess its efficiency, five different configurations were tested using an indoor solar simulator. The configurations analyzed were as follows: (a) an unenhanced PV panel, (b) PVT with circular absorber tubes (C-PVT), (c) PVT with twisted absorber tubes (T-PVT), (d) C-PVT with nano-PCM (C-PVT-PCM), and (e) T-PVT with nano-PCM (T-PVT-PCM). The thermal, photovoltaic, and combined photovoltaic-thermal efficiencies were evaluated at varying mass flow rates (0.008-0.04kg/s) and a constant solar irradiance of 800W/m2. Among the configurations tested, the T-PVT-PCM configuration demonstrated the highest performance. Specifically, at a mass flow rate of 0.04kg/s, solar irradiance of 800W/m2, and an ambient temperature of 27°C, it achieved photovoltaic, thermal, and combined photovoltaic-thermal efficiencies of 9.46%, 79.40%, and 88.86%, respectively. The utilization of twisted absorber tubes in the design notably improved thermal efficiency by enhancing heat transmission between the liquid and the tube surface. Furthermore, the implementation of T-PVT-PCM led to a significant reduction in surface temperature. Compared to the unenhanced PV panel, it lowered the surface temperature by approximately 30°C, and when compared to C-PVT-PCM, it reduced it by around 10°C. Notably, T-PVT-PCM outperformed the unenhanced PV panel by exhibiting a 34.5% higher photovoltaic efficiency. Overall, the study highlights the performance of the PVT collector with twisted absorber tubes and nanoparticle-enhanced phase change material. The innovative design achieved remarkable thermal efficiency, reduced surface temperatures, and significantly enhanced photovoltaic efficiency compared to traditional configurations. These findings contribute to the development of more efficient and versatile solar energy systems with the potential for broader applications in renewable energy technology.
Enhancing the performance of water-based PVT collectors with nano-PCM and twisted absorber tubes Anwer B. Al-Aasama; Adnan Ibrahim; Ubaidah Syafiq; Kamaruzzaman Sopian; Bassam M. Abdulsahib; Mojtaba Dayer
International Journal of Renewable Energy Development Vol 12, No 5 (2023): September 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.54345

Abstract

The study investigated the thermal performance of a photovoltaic thermal (PVT) collector with a twisted absorber tube and nanoparticle-enhanced phase change material (nano-PCM). The PVT collector consisted of twisted absorber tubes, a container filled with nano-PCM, and a photovoltaic (PV) panel. To assess its efficiency, five different configurations were tested using an indoor solar simulator. The configurations analyzed were as follows: (a) an unenhanced PV panel, (b) PVT with circular absorber tubes (C-PVT), (c) PVT with twisted absorber tubes (T-PVT), (d) C-PVT with nano-PCM (C-PVT-PCM), and (e) T-PVT with nano-PCM (T-PVT-PCM). The thermal, photovoltaic, and combined photovoltaic-thermal efficiencies were evaluated at varying mass flow rates (0.008-0.04kg/s) and a constant solar irradiance of 800W/m2. Among the configurations tested, the T-PVT-PCM configuration demonstrated the highest performance. Specifically, at a mass flow rate of 0.04kg/s, solar irradiance of 800W/m2, and an ambient temperature of 27°C, it achieved photovoltaic, thermal, and combined photovoltaic-thermal efficiencies of 9.46%, 79.40%, and 88.86%, respectively. The utilization of twisted absorber tubes in the design notably improved thermal efficiency by enhancing heat transmission between the liquid and the tube surface. Furthermore, the implementation of T-PVT-PCM led to a significant reduction in surface temperature. Compared to the unenhanced PV panel, it lowered the surface temperature by approximately 30°C, and when compared to C-PVT-PCM, it reduced it by around 10°C. Notably, T-PVT-PCM outperformed the unenhanced PV panel by exhibiting a 34.5% higher photovoltaic efficiency. Overall, the study highlights the performance of the PVT collector with twisted absorber tubes and nanoparticle-enhanced phase change material. The innovative design achieved remarkable thermal efficiency, reduced surface temperatures, and significantly enhanced photovoltaic efficiency compared to traditional configurations. These findings contribute to the development of more efficient and versatile solar energy systems with the potential for broader applications in renewable energy technology.
Energy performance evaluation of a photovoltaic thermal phase change material (PVT-PCM) using a spiral flow configuration Muhammad Syazwan Bin Aziz; Adnan Ibrahim; Muhammad Amir Aziat Bin Ishak
International Journal of Renewable Energy Development Vol 12, No 5 (2023): September 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.56052

Abstract

A relatively new technology, a hybrid photovoltaic thermal (PVT) solar collector, allows for producing electrical and thermal energy.  However, the module heats up more when exposed to sunlight thanks to the PVT collector's incorporation, reducing its efficiency.  Consequently, lowering the operating temperature is crucial for maximizing the system's effectiveness.  This research aims to create a photovoltaic thermal phase change material (PVT-PCM) solar collector and evaluate its energy performance through a controlled laboratory environment.  Two different PVT collector designs, one using water and the other using a phase change material (PCM), were evaluated using a spiral flow configuration.  Under a sun simulator, the PVT solar collector was subjected to 400 W/m2, 600 W/m2, and 800 W/m2 of solar irradiation at three different mass flow rates.  The results showed that under 800 W/m2 of solar irradiation and 0.033 kg/s mass flow rate, the collector using water could only reach an overall maximum efficiency of 64.34 %, whereas the PVT-PCM configuration with spiral flow had the maximum performance, with an overall efficiency of 67.63%.