Claim Missing Document
Check
Articles

Found 1 Documents
Search

Analisis Hasil Segmentasi Citra Daun Bawang Dengan Metode Adaptive Thesholding dan K-Means Clustering Danar Putra Pamungkas; Firmansyah Mukti Wijaya
JOINTECS (Journal of Information Technology and Computer Science) Vol 8, No 3 (2023)
Publisher : Universitas Widyagama Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31328/jointecs.v8i3.4791

Abstract

Segmentasi citra yang akurat memiliki dampak signifikan pada hasil analisis citra secara keseluruhan. Penelitian ini bertujuan untuk membandingkan metode Adaptive Thresholding dan K-Means Clustering dalam segmentasi citra daun bawang merah dengan latar belakang yang berbeda. Dengan menggunakan analisis kuantitatif terhadap 25 citra daun bawang yang beragam, hasil penelitian menunjukkan bahwa Adaptive Thresholding menghasilkan segmentasi yang memuaskan dalam skala warna hitam dan putih, sementara K-Means Clustering dengan ekstraksi fitur juga memberikan hasil yang memuaskan. Analisis berbasis aplikasi web dalam 5 skenario mengonfirmasi keefektifan kedua metode tersebut. Adaptive Thresholding mencapai Jaccard index sebesar 0.92, Rand index sebesar 0.85, dan F1 score sebesar 0.95. Sedangkan K-Means Clustering memiliki Jaccard index sebesar 0.64, Rand index sebesar 0.69, dan F1 score sebesar 0.71 pada skenario latar belakang mediatanam. Meskipun demikian, hasil segmentasi terbaik diperoleh dengan menggunakan Adaptive Thresholding pada latar belakang Putih Cahaya Terang, dengan Jaccard index sebesar 0.96, Rand index sebesar 0.91, dan F1 score sebesar 0.98. Penelitian ini memberikan rekomendasi untuk segmentasi optimal citra daun bawang merah dengan latar belakang yang berbeda, dengan menekankan keefektifan Adaptive Thresholding dalam mencapai tingkat akurasi tinggi melalui ekstraksi fitur bentuk dan tekstur. Pencahayaan yang memadai saat pengambilan citra merupakan faktor penting untuk mencapai hasil segmentasi yang optimal.