Claim Missing Document
Check
Articles

Found 6 Documents
Search

Evaluation of Account Receivables Management to Prevent Possible Company Losses as a Result of Uncollectible Accounts Receivables at PT Askrindo (Persero) of the Surakarta Branch Office Azzahra Syafiya Syaebani; Vidia Ayu Satyanovi; Lina Nur Ardila; Andy Supriyadi
AKUMULASI: Indonesian Journal of Applied Accounting and Finance Vol. 1 No. 2 (2022): December
Publisher : Vocational School, Universitas Sebelas Maret (UNS), Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20961/akumulasi.v1i2.374

Abstract

This research was conducted at PT Askrindo (Persero) of the Surakarta Branch Office. This study aimed to investigate the management of accounts receivable and the implementation of the management of accounts receivable running within the company whether they are in accordance with the policies in force in the company. This study uses descriptive data analysis method. The results of this study indicate that the implementation of accounts receivable management at PT Askrindo (Persero) of the Surakarta Branch Office, which includes the recognition, recording, classification, and accounts receivable management policies, has not followed the guidelines for accounts receivable management business issued by the company. First, the implementation of the recognition of trade receivables is in accordance with the guidelines for managing accounts receivables, which are recognized after the issuance of an insurance certificate/policy. Second, the implementation of recording accounts receivable complies with the guidelines for managing accounts receivables, which are recorded using the Askrindo Financial Management System (FMS). Third, the implementation of the classification of accounts receivable is consistent with the guidelines for managing accounts receivable, namely by classifying current, non-current, and loss accounts receivables. Fourth, the implementation of the accounts receivable management policy does not follow the guidelines for managing accounts receivable. The company has not implemented several policies according to the guidelines in the company.
Implementasi Aplikasi Peminjaman Ruang Rapat Berbasis Web Di Sekolah Vokasi Universitas Sebelas Maret Andy Supriyadi
Jurnal ilmiah Sistem Informasi dan Ilmu Komputer Vol. 2 No. 3 (2022): November : Jurnal ilmiah Sistem Informasi dan Ilmu Komputer
Publisher : Lembaga Pengembangan Kinerja Dosen

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55606/juisik.v2i3.427

Abstract

A meeting room is a designated place where you and your team can participate, brainstorm, and have important conversations. It is an essential part of any office space and can help improve workflows. A meeting room is worth considering. An effective meeting room can include sharing ideas, working through feedback and obstacles, and more discussion related to improving the Tri-Dharma. Sebelas Maret University Vocational School has several meeting rooms in different denominations, but the reservation process was done manually using Microsoft Excel. There were some problems in the reservation process, one of the main problems is that a meeting room can be claimed to hold different meetings at the same time and at the same time. This research attempts to examine the implementation of a web-based reservation process. This application was built using open source based PHP and Mysql. The availability of this online application will improve efficiency and effectiveness in supporting the reservation process. The test procedure is carried out on a black box and the result can be displayed correctly.
Pemodelan Klasifikasi Lama Waktu Pencapaian Jabatan Fungsional Lektor Kepala menggunakan Optimizer Parameter Support Vector Machine SUPRIYADI, ANDY; SAFI'IE, MUHAMMAD ASRI
ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika Vol 11, No 4: Published October 2023
Publisher : Institut Teknologi Nasional, Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26760/elkomika.v11i4.879

Abstract

ABSTRAKPemenuhan dosen dengan jabatan fungsional lektor kepala dan guru besar menjadi sangat penting dalam memperoleh akreditasi unggul bagi perguruan tinggi. Salah satu upaya pemenuhan dengan melakukan klasifikasi dosen dari sisi lama waktu pencapaian jabatan fungsional lektor kepala dari lektor pada Universitas Sebelas Maret dibagi menjadi tiga, yaitu cepat, sedang, dan lambat. Variabel yang digunakan dalam klasifikasi antara lain usia, tempat studi, lama studi, international research, sertifikasi dosen, jabatan structural dan bidang ilmu dari staf pengajar. Penelitian ini melakukan klasifikasi menggunakan algoritma Support Vector Machine dengan dataset sejumlah 520 data. K-fold Cross Validation digunakan untuk membagi dataset menjadi data latih dan data uji, dengan k=5. Hasil pengujian model diperoleh rata-rata akurasi terbaik menggunakan Support Vector Machine sebesar 86.39% dengan Optimizer Parameter sedangkan rata-rata akurasi Support Vector Machine tanpa parameter sebesar 80.92%.Kata kunci: klasifikasi, jabatan fungsional, Support Vector Machine, K-fold Cross Validation ABSTRACTThe fulfillment of lectures on achieving associate professor and professor position holds tremendous significance for gaining excellent institution Accreditation Predicate. Sebelas Maret Univesity took measures to achieve this objective by carrying out thorough the classification on the length of achieving associate professor from instructor position and split into 3 grades namely fast, medium and slow. The features used for conducting the classification are age, place of study, the length of the study, the amount of international publication, lecturer certification, lecturer’s structural position and field of study. In this study, the Support Vector Machine algorithm was utilized to classify a dataset consisting of 520 data. To ensure reliable results, K-fold Cross Validation was applied to divide the dataset into training and test data, with k=5. The evaluation of the model's performance revealed that the Support Vector Machine achieved an impressive average accuracy of 86.39%. In contrast, the average accuracy of the Support Vector Machine to 80.92% without parameters.Keywords: classification, associate lectures position, support vector machine, K-fold Cross Validation
Literasi Data dan Pembuatan Media Pembelajaran Interaktif berbasis Artificial Intelligence bagi Pengajar SMA Negeri 2 Surakarta Supriyadi, Andy; Firdaus, Nurul; Yusfida, Fiddin; Hartatik, Hartatik
Indonesian Journal of Community Services Vol 6, No 2 (2024): November 2024
Publisher : LPPM Universitas Islam Sultan Agung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30659/ijocs.6.2.201-208

Abstract

Teknologi Artificial intelligence (AI) dalam pembelajaran tidak bisa dihindari. Hal tersebut memerlukan peningkatan kompetensi guru dan infrastruktur digital di dalam lingkungan sekolah. Hadirnya teknologi tersebut sering kali disalah gunakan siswa dalam mengerjakan tugas-tugas sekolah. Memperhatikan situasi tersebut pengajar atau guru dituntut untuk meningkatkan kompetensi dalam menggunakan teknologi informasi dalam memanfaatkan AI secara baik dan tepat sasaran. Selain itu belum adanya skill atau background pendidikan guru yang berelasi dengan mata pelajaran yang diampu menjadikan permasalahan yang perlu diatasi dalam jangka waktu yang dekat karena siswa perlu mendapatkan pemahaman yang tepat dari materi yang diajarkan. Sehingga perlu dukungan dari insan Perguruan Tinggi untuk melaksanakan pengabdian dengan memberikan pelatihan maupun pendampingan dalam pemanfaatan teknologi AI di dalam menunjang pembelajaran, apalagi untuk mata pelajaran Teknologi Informasi dan Komunikasi (TIK) atau Informatika yang mana transformasi digital yang pergerakannya sangat cepat. Pelatihan dan Pendampingan yang dilakukan bertujuan untuk membantu pengajar SMA menyesuaikan materi pembelajaran berdasarkan pola belajar, kebutuhan, kekuatan, kelemahan masing-masing siswa, dan dapat membantu pengajar untuk memanajemen tugas-tugas administratif seperti membuat bahan ajar, RPP atau silabus, penjadwalan, dan penilaian. Pelatihan ini diharapkan dapat membantu siswa belajar secara mandiri dengan memanfaatkan AI berbasis tutor virtual sesuai dengan tema pembelajaran, serta siswa dapat menggunakan teknologi secara bertanggung jawab dan etis. Pelatihan ini juga mengenalkan teknologi untuk mendeteksi karya hasil kecerdasan buatan atau AI. Hasil dari implementasi pelatihan literasi dan pemanfaatan AI bagi pengajar SMA berupa publikasi di media online, video dan jurnal/prosiding.Artificial intelligence has already been creating an impact on education. AI's impact on education is transformative and multi-faceted. Artificial intelligence is inevitable. AI powered adaptive learning which can provide immersive experience. Therefore, Artificial intelligence tools can enhance the teachers' and students' experience by providing personalized learning materials, automating administrative tasks, and even offering tutoring assistance. AI can enhance learning outcomes and ensure students receive the support they require to succeed. Therefore, teaching training programs and training courses were held by the university to enhance teachers’ understanding in line with the technology, especially in the use of AI. The training and courses assist in automating administrative tasks, freeing up valuable time for educators. From grading assignments and providing feedback to generating reports, teachers can focus more on individualized instruction and student support. This helps create a more efficient and productive learning environment. By using technology effectively educators can make informed decisions to improve teaching methods, curriculum design, and educational policies. Educators can create educational systems that are more personalized, efficient, and responsive to the needs of students. This purpose of this study is to improve teachers' knowledge on AI. By using AI educators create educational systems that are more personalized, efficient, and responsive to the needs of students. The result of this research included the teachers' product such as books, video, journal, and proceeding by implementing AI.
MENTORA: Inovasi Digital untuk Pemberdayaan Masyarakat Berbasis Data Fiddin Yusfida; Hartatik, Hartatik; Firdaus, Nurul; Kusuma Riasti, Berliana; Supriyadi, Andy
KOMUNITA: Jurnal Pengabdian dan Pemberdayaan Masyarakat Vol 4 No 3 (2025): Agustus
Publisher : PELITA NUSA TENGGARA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.60004/komunita.v4i3.225

Abstract

Kegiatan Pelatihan dan Serah Terima Aplikasi MENTORA dilaksanakan oleh Grup Riset Applied Data Science and AI (DSAI) Universitas Sebelas Maret (UNS) Surakarta melalui skema Pengabdian Kepada Masyarakat Hibah Grup Riset (PKM HGR-UNS) pada 10 Juli 2025 di D3 Teknik Informatika, Sekolah Vokasi UNS. Kegiatan ini bertujuan meningkatkan efektivitas pengelolaan data pendampingan komunitas dengan memanfaatkan teknologi informasi. MENTORA adalah aplikasi digital inovatif yang dirancang untuk mendukung pemberdayaan masyarakat berbasis wilayah dengan fitur unggulan seperti Admin Center, Fasilitator Hub, Group Management, Community Management, Activity Management, Activity Insights Dashboard, dan Data Exporter. Pelatihan diikuti oleh admin dan fasilitator yang akan mengoperasikan aplikasi di lapangan untuk memastikan implementasi optimal. Acara ini juga menjadi momentum inisiasi kerja sama tridharma perguruan tinggi antara UNS dan Majelis Pemberdayaan Masyarakat PP Muhammadiyah. Diharapkan dengan hadirnya MENTORA, pengelolaan data pendampingan masyarakat menjadi lebih terstruktur, transparan, dan mendukung transformasi digital di komunitas.
Optimizing Alternating Least Squares for Recommender Systems Using Particle Swarm Optimization Yusfida A'la, Fiddin; Firdaus, Nurul; Supriyadi, Andy
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 4 (2025): JUTIF Volume 6, Number 4, Agustus 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.4.5154

Abstract

Recommender systems play a crucial role in various digital platforms by assisting users in discovering relevant items. The research problem addressed in this study is the limited predictive accuracy of ALS-based recommender systems due to suboptimal parameter selection. This study explores how Particle Swarm Optimization (PSO) can be leveraged for parameter optimization to address this limitation. The dataset used is MovieLens 1M, which contains over one million user ratings for thousands of movies. The research process includes data preprocessing, data splitting, model training, and evaluation using Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) as the primary metrics. The evaluation results indicate a significant improvement in model performance after optimization, with RMSE decreasing from 0.895 to 0.860 and MAE from 0.704 to 0.680. These findings demonstrate that optimization algorithms can effectively improve the prediction accuracy of recommendation systems. This research contributes to the application of swarm-based optimization techniques in enhancing matrix factorization-based recommender systems.