This Author published in this journals
All Journal MAESTRO
Claim Missing Document
Check
Articles

Found 1 Documents
Search

PREDIKSI IRADIASI MATAHARI MENGGUNAKAN ALGORITMA ARTIFICIAL NEURAL NETWORK Fatahillah Al Mahfudz; Suwasti Broto; Akhmad Musafa
MAESTRO Vol 6 No No 2 (2023): Vol.6 No. 2. Oktober 2023
Publisher : FAKULTAS TEKNIK UNIVERSITAS BUDI LUHUR

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Prediksi iradiasi matahari merupakan hal yang krusial dalam merancang dan mengembangkan sistem energi terbarukan dengan energi matahari. Dalam tugas akhir ini dilakukan prediksi iradiasi matahari dengan meggunakan algoritma Artificial Neural Network (ANN) dalam bentuk model sekuensial. Model Sequential ANN dilatih dengan dataset yang mencakup berbagai faktor cuaca seperti suhu, kelembaban, tekanan udara, serta data radiasi matahari historis. Proses pelatihan dimulai dengan membagi dataset menjadi data latih dan data uji dengan tiga variasi komposisi data latih dan uji yang berbeda (80%:20%), (75%:25%), dan (66%:34%). Model ANN yang dibuat terdiri dari empat lapisan, satu lapisan masukan, dua lapisan tersembunyi dengan jumlah neuron (32, 64), dan satu lapisan keluaran. Melalui iterasi berulang, model diperbarui menggunakan algoritma optimisasi Adaptive Moment Estimation (ADAM) untuk mengoptimalkan parameter. Model ANN diuji dengan tiga variabel masukan iradiasi matahari yang berbeda (Global Horizontal Irradiance, Diffuse Horizontal Irradiance, dan Direct Normal Irradiance). Hasil pengujian menunjukkan bahwa model Sequential ANN mampu menghasilkan prediksi iradiasi matahari dengan tingkat akurasi yang signifikan. Hasil prediksi menunjukkan Mean Absolute Error (MAE=0,0029) , Mean Absolute Percentage Error (MAPE=2,3289%), Root Mean Square Error (RMSE=0,0038), dan Mean Square Error (MSE=0,0001) pada komposisi data latih dan uji (80%:20%).