Djoni Haryadi Setiabudi
Petra Christian University

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Effect of Students’ Activities on Academic Performance Using Clustering Evolution Analysis Djoni Haryadi Setiabudi; Michael Santoso
CommIT (Communication and Information Technology) Journal Vol. 17 No. 2 (2023): CommIT Journal
Publisher : Bina Nusantara University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21512/commit.v17i2.9053

Abstract

Educational data mining is a technique to evaluate educational process of university students, especially in their early stages. Most preliminary studies focus on observing courses undertaken by students from one semester to the next to predict their success rate. However, besides studying, many students are also involved in non-academic activities, which tends to affect their grades. Therefore, the research aims to determine the effect of student activities on grades while taking into account their academic activities. The method used for clustering is K-Means. Data are collected by observing students’ activity patterns in lectures. The research is conducted in two study programs at Petra Christian University: Business Management and Architecture. The results show that the K-Means method gives good results. The clusters formed from the data show non-homogenous groups and produce insights from several groups. The results show a tendency for students’ performance to increase along with the number of activities and points earned. Most students have increased activities during busy times in the third, fourth, fifth, and sixth semesters. The peak is between the fifth and sixth semesters. Then, it starts to decrease in the seventh and eighth semesters. Therefore, students’ activities in the Business Management study program affect performance significantly. Meanwhile, in the Architecture study program, it has an insignificant effect on performance.