Toha, Franciscus Xaverius
Geotechnical Research Group, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung. CIBE Building, Room 05-11, Jl. Ganesha No. 10 Bandung 40132

Published : 6 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 6 Documents
Search

Increase of In-Situ Measured Shear Wave Velocity in Sands with Displacement Pile and Stone Column Inclusions Toha, Franciscus Xaverius
Jurnal Teknik Sipil Vol 24, No 1 (2017)
Publisher : Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2185.59 KB) | DOI: 10.5614/jts.2017.24.1.1

Abstract

AbstractSeismic downhole and MASW measurements were conducted at a potentially liquefiable site, where PC piles and stone column inclusion were provided to remediate the foundation soil. The selected site is part of a refinery located in high seismicity zone. The seismic measurements were done prior and after the PC piles and stone columns were installed. The densification, reinforcing, and dissipation contribution to the overall mitigation was elaborated herein. The measurement results are essentially consistent with the most recent theoretical developments and indicate that the strengthening due to mitigation is higher than predicted.AbstrakPada situs yang berpotensi likuifaksi dengan sisipan tiang pancang PC dan tiang batu, dilakukan pengukuran seismik turun lubang dan MASW. Lokasi yang dipilih adalah bagian dari sebuah kilang minyak yang terletak dalam zona gempa tinggi. Pengukuran seismik dilakukan sebelum dan sesudah pemancangan tiang PC dan tiang batu. Uraian mendalam tentang sumbangan pemadatan, perkuatan dan disipasi terhadap keseluruhah mitigasi disampaikan di sini. Hasil pengukuran pada dasarnya konsisten dengan perkembangan teoritis terkini dan menunjukkan bahwa perkuatan akibat mitigasi masih di atas perkiraan.
Post Preloading Creep Properties of Highly Compressible Harbor Marine Sediments Toha, Franciscus Xaverius
Journal of Engineering and Technological Sciences Vol 49, No 2 (2017)
Publisher : ITB Journal Publisher, LPPM ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1318.658 KB) | DOI: 10.5614/j.eng.technol.sci.2017.49.2.1

Abstract

A laboratory experimental research in creep behavior of soft clay marine sediments was done to investigate creep strain under reloading. A total of 52 oedometer tests were carried out with 16 slurry sediment samples subjected to cycles of unloading at preload removal pressure and reloading to higher design pressures. Common practice as well as more recent advanced methods of creep deformation analysis were used to refine the predictions. The study indicates that although preloading substantially reduces post construction creep, the analysis is very sensitive to creep indices at slight overconsolidation and the resulting creep may not be negligible at previously established limits of primary to secondary compression ratios.
Seismic Pore Water Pressure Relief Wells for Gravel Column–Bed System Toha, Franciscus Xaverius
Journal of Engineering and Technological Sciences Vol 49, No 1 (2017)
Publisher : ITB Journal Publisher, LPPM ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1353.511 KB) | DOI: 10.5614/j.eng.technol.sci.2017.49.1.4

Abstract

Liquefaction mitigation can be achieved by dissipating seismic pore pressures. The research reported in this paper elaborates the effectiveness in dissipating seismic pore pressures of a gravel bed and relief well system using gravel columns in a case study in Cilacap, Indonesia. Seismic pore pressure generation was analyzed using commonly available methods in liquefaction analysis. The evaluated pore pressures in the sand layer and gravel columns were used in a 2D dissipation analysis using finite-difference consolidation equation solutions. The results of this study showed that a simple and cost-effective relief well and gravel bed or strip system can effectively dissipate excess pore pressures in the sand layer and gravel columns to a maximum residual pore pressure below 40%, thus reducing liquefaction potential as well as protecting the foundations in the sand.
Seismic Pore Water Pressure Relief Wells for Gravel Column–Bed System Franciscus Xaverius Toha
Journal of Engineering and Technological Sciences Vol. 49 No. 1 (2017)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.eng.technol.sci.2017.49.1.4

Abstract

Liquefaction mitigation can be achieved by dissipating seismic pore pressures. The research reported in this paper elaborates the effectiveness in dissipating seismic pore pressures of a gravel bed and relief well system using gravel columns in a case study in Cilacap, Indonesia. Seismic pore pressure generation was analyzed using commonly available methods in liquefaction analysis. The evaluated pore pressures in the sand layer and gravel columns were used in a 2D dissipation analysis using finite-difference consolidation equation solutions. The results of this study showed that a simple and cost-effective relief well and gravel bed or strip system can effectively dissipate excess pore pressures in the sand layer and gravel columns to a maximum residual pore pressure below 40%, thus reducing liquefaction potential as well as protecting the foundations in the sand.
Post Preloading Creep Properties of Highly Compressible Harbor Marine Sediments Franciscus Xaverius Toha
Journal of Engineering and Technological Sciences Vol. 49 No. 2 (2017)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.eng.technol.sci.2017.49.2.1

Abstract

A laboratory experimental research in creep behavior of soft clay marine sediments was done to investigate creep strain under reloading. A total of 52 oedometer tests were carried out with 16 slurry sediment samples subjected to cycles of unloading at preload removal pressure and reloading to higher design pressures. Common practice as well as more recent advanced methods of creep deformation analysis were used to refine the predictions. The study indicates that although preloading substantially reduces post construction creep, the analysis is very sensitive to creep indices at slight overconsolidation and the resulting creep may not be negligible at previously established limits of primary to secondary compression ratios.
Increase of In-Situ Measured Shear Wave Velocity in Sands with Displacement Pile and Stone Column Inclusions Franciscus Xaverius Toha
Jurnal Teknik Sipil Vol 24 No 1 (2017)
Publisher : Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/jts.2017.24.1.1

Abstract

AbstractSeismic downhole and MASW measurements were conducted at a potentially liquefiable site, where PC piles and stone column inclusion were provided to remediate the foundation soil. The selected site is part of a refinery located in high seismicity zone. The seismic measurements were done prior and after the PC piles and stone columns were installed. The densification, reinforcing, and dissipation contribution to the overall mitigation was elaborated herein. The measurement results are essentially consistent with the most recent theoretical developments and indicate that the strengthening due to mitigation is higher than predicted.AbstrakPada situs yang berpotensi likuifaksi dengan sisipan tiang pancang PC dan tiang batu, dilakukan pengukuran seismik turun lubang dan MASW. Lokasi yang dipilih adalah bagian dari sebuah kilang minyak yang terletak dalam zona gempa tinggi. Pengukuran seismik dilakukan sebelum dan sesudah pemancangan tiang PC dan tiang batu. Uraian mendalam tentang sumbangan pemadatan, perkuatan dan disipasi terhadap keseluruhah mitigasi disampaikan di sini. Hasil pengukuran pada dasarnya konsisten dengan perkembangan teoritis terkini dan menunjukkan bahwa perkuatan akibat mitigasi masih di atas perkiraan.