Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Journal of Geoscience, Engineering, Environment, and Technology

Fluid Inclusion Study of The Tumpangpitu High Sulfidation Epithermal Gold Deposit in Banyuwangi District, East Java, Indonesia Myaing, Yu Yu; Idrus, Arifudin; Titisari, Anastasia Dewi
Journal of Geoscience, Engineering, Environment, and Technology Vol 3 No 1 (2018): JGEET Vol 03 No 01 : March (2018)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1220.852 KB) | DOI: 10.24273/jgeet.2018.3.01.1039

Abstract

The Tumpangpitu high sulfidation (HS) epithermal gold deposit is located in the south coast of East Java, Banyuwangi District, East Java Province, Indonesia. This area lies within the central portion of the Cenozoic Sunda‐Banda magmatic arc which trends southeast from northern Sumatra to west Java then eastward through east Java, Bali, Lombok, Sumbawa and terminating at Banda sea. The geology of the Tumpangpitu is predominantly occupied by Late Oligocene to Middle Miocene low-K calc-alkaline to alkaline andesitic volcanic rocks and interbedded with volcaniclastic rock sequences, which are associated with low-K intermediate intrusions. The mineralization style at the Tumpangpitu area is composed of a high‐sulfidation (HS) epithermal gold-copper system which is typically associated with concealed gold-rich porphyry copper system. The HS epithermal mineralization is hosted by volcanic and volcaniclastic rocks in this research area. The mineralization domains are divided into Zone A, Zone B and Zone C which are situated along NW-SE-trending silica ledges zones. The HS epithermal mineralization is texturally occurs as vuggy replacements mineralization as well as stockworks, disseminated forms, fractures and veins. Fluid inclusion study was conducted for 6 quartz vein samples which petrographically entrapped fluid inclusions. Homogenization temperature (Th) and melting temperature (Tm) can microthermometrically be determined by fluid inclusion analysis. The average homogenization temperature (Th) of the fluid inclusions gives 180˚C to 342˚C and melting temperature are from -0.1 ˚C to -1.4˚C. Tm corresponds to the salinities ranging from 0.1 to 4.5 wt% NaCl equivalent. The paleodepth of ore formation can be estimated from the salinity of fluid. Since the deposit was not formed at boiling condition, the minimum paleodepth of ore (quartz) samples taken from both shallow level (53.35 m) and deep level (135.15 m) is determined at 650m and 1,220 m, respectively. The microthermometric data point out that the Tumpangpitu deposit formed at moderate temperature and low salinity by magmatic fluid mixing and dilution by meteoric water during the hydrothermal fluid evolution. On the basis of the fluid inclusion microthermometric data and its other key characteristics, the Tumpangpitu gold mineralization shares some similarities compared to other typical HS-epithermal gold deposits worlwide although it also shares few differences.
Fluid Inclusion Study of The Tumpangpitu High Sulfidation Epithermal Gold Deposit in Banyuwangi District, East Java, Indonesia Yu Yu Myaing; Arifudin Idrus; Anastasia Dewi Titisari
Journal of Geoscience, Engineering, Environment, and Technology Vol. 3 No. 1 (2018): JGEET Vol 03 No 01 : March (2018)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1220.852 KB) | DOI: 10.24273/jgeet.2018.3.01.1039

Abstract

The Tumpangpitu high sulfidation (HS) epithermal gold deposit is located in the south coast of East Java, Banyuwangi District, East Java Province, Indonesia. This area lies within the central portion of the Cenozoic Sunda‐Banda magmatic arc which trends southeast from northern Sumatra to west Java then eastward through east Java, Bali, Lombok, Sumbawa and terminating at Banda sea. The geology of the Tumpangpitu is predominantly occupied by Late Oligocene to Middle Miocene low-K calc-alkaline to alkaline andesitic volcanic rocks and interbedded with volcaniclastic rock sequences, which are associated with low-K intermediate intrusions. The mineralization style at the Tumpangpitu area is composed of a high‐sulfidation (HS) epithermal gold-copper system which is typically associated with concealed gold-rich porphyry copper system. The HS epithermal mineralization is hosted by volcanic and volcaniclastic rocks in this research area. The mineralization domains are divided into Zone A, Zone B and Zone C which are situated along NW-SE-trending silica ledges zones. The HS epithermal mineralization is texturally occurs as vuggy replacements mineralization as well as stockworks, disseminated forms, fractures and veins. Fluid inclusion study was conducted for 6 quartz vein samples which petrographically entrapped fluid inclusions. Homogenization temperature (Th) and melting temperature (Tm) can microthermometrically be determined by fluid inclusion analysis. The average homogenization temperature (Th) of the fluid inclusions gives 180˚C to 342˚C and melting temperature are from -0.1 ˚C to -1.4˚C. Tm corresponds to the salinities ranging from 0.1 to 4.5 wt% NaCl equivalent. The paleodepth of ore formation can be estimated from the salinity of fluid. Since the deposit was not formed at boiling condition, the minimum paleodepth of ore (quartz) samples taken from both shallow level (53.35 m) and deep level (135.15 m) is determined at 650m and 1,220 m, respectively. The microthermometric data point out that the Tumpangpitu deposit formed at moderate temperature and low salinity by magmatic fluid mixing and dilution by meteoric water during the hydrothermal fluid evolution. On the basis of the fluid inclusion microthermometric data and its other key characteristics, the Tumpangpitu gold mineralization shares some similarities compared to other typical HS-epithermal gold deposits worlwide although it also shares few differences.
Ore Forming Fluid of Epithermal Quartz Veins at Cisuru Prospect, Papandayan District, West Java, Indonesia Kha Yay Oo; Wayan Warmada; Anastasia Dewi Titisari; Koichiro Watanabe
Journal of Geoscience, Engineering, Environment, and Technology Vol. 4 No. 3 (2019): JGEET Vol 04 No 03 : September (2019)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (726.877 KB) | DOI: 10.25299/jgeet.2019.4.3.2279

Abstract

The Cisuru area is located in Talegong Sub-district, Garut Regency, West Java, Indonesia which is belongs to the central part of Southern Mountain Slope. The aim of this research is to understand the nature and characteristic of fluid inclusion from quartz veins (especially drill core samples) in the study area. Rock units in the area are characterized by Tertiary volcanic rocks and volcaniclastic sequence which is mainly composed of andesite, andesitic breccia, volcanic breccia, lapilli tuff, dacite and related to the intrusion of diorite. The Cisuru epithermal mineralization is dominantly hosted by andesite, dacite, breccia and lapilli tuff, and would probably be controlled by both permeable rocks and NS and NE-SW trending strike-slip faults. The mineralization is shown as void filling and replacement within the silica zone, veinlets along with the open space/fractures and dissemination. Fluid inclusion from quartz veins was studied to know nature, characteristics and origin of hydrothermal fluids. Microthermometric measurements of fluid inclusions were realized by using a Linkam THMSG 600 combined freezing and heating stages. Homogenization temperature and final ice melting temperature were measured for primary two-phase inclusion from quartz veins. Base on the study of the fluid inclusion, the value of homogenization temperature (Th) range from 200 ºC to 395 °C and ice melting temperature range from -0.1 to - 4.5 where salinity range from 0.2 to 7.2 wt. % NaCl equivalent. Fluid inclusion petrography and microthermometric measurement data exhibit that fluid mixing, dilution and boiling were main processes during the hydrothermal evolution. The formation temperature of each quartz vein is 260 ºC to 290 ºC and also their formation depth is estimated between 560m to 925m respectively. Combination of fluid inclusions petrography, microthermometric measurement, and estimate paleo depth from Cisuru area were suggested under the epithermal environment.