Fitriana Sholekhah
STMIK Amik Riau

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Perbandingan Algoritma Naïve Bayes dan K-Nearest Neighbors untuk Klasifikasi Metabolik Sindrom: Comparison of Naive Bayes and K-Nearest Neighbors Algorithms for Metabolic Syndrome Classification Fitriana Sholekhah; Adinda Dwi Putri; Rahmaddeni Rahmaddeni; Luasiana Efrizoni
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 4 No. 2 (2024): MALCOM April 2024
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v4i2.1249

Abstract

Kondisi medis yang dikenal sebagai sindrom metabolik berpotensi meningkatkan kemungkinan penyakit jantung koroner, stroke, serangan jantung dan diabetes tipe 2. Sindrom metabolik juga dapat menyebabkan gula darah tinggi, kadar kolesterol rendah, obesitas secara bersamaan dan kelebihan lemak di daerah pinggang. Jika kombinasi dari ketiga kondisi ini terjadi maka dapat dikatakan penyakit ini  sebagai sindrom metabolik. Selain itu, sindrom metabolik juga dikaitkan dengan resistensi insulin, artinya dimana sel-sel tubuh tidak merespon baik terhadap efek insulin yang menyebabkan kadar gula darah tinggi karena gula tidak terserap ke dalam sel dengan baik. Sindrom metabolik tumbuh seiring meningkatnya obesitas di Asia, dengan perkiraan prevalensi yang terus naik. Ini berpotensi meningkatkan kasus penyakit kardiovaskular dan risiko kematian. Oleh karena itu, perlu dikembangkan model untuk mendiagnosis sindrom metabolik. Penelitian ini bertujuan untuk membandingkan kinerja algoritma klasifikasi utama, yaitu Naïve Bayes (NB) dan K-Nearest Neighbors (KNN) dalam mendeteksi sindrom metabolik. Hasil dari penelitian ini menunjukkan bahwa penggunaan algoritma Naïve Bayes menghasilkan akurasi sebesar 79%, sedangkan akurasi tertinggi dari algoritma K-Nearest Neighbors (KNN) adalah 82%. Kesimpulannya, dari hasil penelitian ini menunjukkan bahwa algoritma K-NN dengan pembagian data 50:50 lebih efektif dalam memprediksi dan mengklasifikasikan sindrom metabolik.