Chandra Saha Dewa Prasetya
Fakultas MIPA, Universitas Gadjah Mada

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Sistem Rekomendasi Pada E-Commerce Menggunakan K-Nearest Neighbor Chandra Saha Dewa Prasetya
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 4 No 3: September 2017
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (717.45 KB) | DOI: 10.25126/jtiik.201743392

Abstract

AbstrakSemakin banyaknya informasi produk yang ada di internet menghadirkan tantangan baik pembeli maupun pebisnis online dalam lingkungan e-commerce. Pembeli sering mengalami kesulitan saat mencari produk di internet karena banyaknya produk yang dijual di internet. Selain itu, pebisnis online sering mengalami kesulitan karena memiliki data mengenai produk, pembeli, dan transaksi yang sangat banyak, sehingga menyebabkan pebisinis online mengalami kesulitan untuk mempromosikan produk yang tepat pada target pembeli tertentu. Sistem rekomendasi dikembangkan untuk mengatasi permasalahan tersebut dengan berbagai metode seperti Collaborative Fltering, Content based, dan Hybrid. Metode Collaborative Fltering menggunakan data rating pembeli, Content Based menggunakan konten produk seperti judul atau deskripsi, dan Hybrid menggunakan keduanya sebagai dasar rekomendasi. Dengan menggunakan basis data graf, maka model sistem rekomendasi dapat dirancang dengan berbagai metode pendekatan sekaligus. Pada penelitian ini, algoritma k-Nearest Neighbor digunakan untuk menentukan top-n rekomendasi produk untuk setiap pembeli. Hasil dari penelitian ini metode Content Based mengungguli metode lain karena data yang digunakan sparse, yaitu kondisi dimana jumlah rating yang diberikan pembeli relatif sedikit terhadap banyaknya produk yang tersedia pada e-commerce.Kata kunci: sistem rekomendasi, k-nearest neighbor, collaborative filtering, content based.AbstractThe growing number of product information available on the internet brings challenges to both customer and online businesses in the e-commerce environment. Customer often have difficulty when looking for products on the internet because of the number of products sold on the internet. In addition, online businessman often experience difficulties because they has much data about products, customers and transactions, thus causing online businessman have difficulty to promote the right product to a particular customer target. A recommendation system was developed to address those problem with various methods such as Collaborative Filtering, ContentBased, and Hybrid. Collaborative filtering method uses customer’s rating data, content based using product content such as title or description, and hybrid using both as the basis of the recommendation. In this research, the k-nearest neighbor algorithm is used to determine the top-n product recommendations for each buyer. The result of this research method Content Based outperforms other methods because the sparse data, that is the condition where the number of rating given by the customers is relatively little compared the number of products available in e-commerce.Keywords: recomendation system, k-nearest neighbor, collaborative filtering, content based.