Thoriq Kurnia Agung
Faculty of Engineering, Universitas Andalas

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Indonesian Journal of Electrical Engineering and Computer Science

Design of battery state of charge monitoring and control system using coulomb counting method based Syafii Syafii; Irfan El Fakhri; Thoriq Kurnia Agung; Farah Azizah
Indonesian Journal of Electrical Engineering and Computer Science Vol 33, No 2: February 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v33.i2.pp736-745

Abstract

Lead-acid batteries are commonly used in photovoltaic systems to store solar energy for continuous use. However, lead-acid batteries have a relatively short lifespan due to frequent over-charging and over-discharging. A battery management system (BMS) is essential for accurately predicting the battery state of charge (SoC) value in order to extend the battery lifespan. In this research, a BMS is developed using the coulomb counting method to estimate the SoC value of a lead-acid battery. The coulomb counting algorithm provides a reliable estimation of the battery’s SoC value by calculating the incoming and outgoing currents. The BMS also uses two normally closed relays to prevent overcharging and over-discharging. The first relay turns on when the SoC reaches 100% full charge and turns off when the SoC decreases to 70%. The second relay turns on when the SoC reaches 20%. The BMS was tested using Blynk, a cloud-based internet of things (IoT) platform. The results showed that the BMS successfully provided monitoring and reliable control of the lead-acid battery, with a low margin of error. This demonstrates that the developed BMS can be practically implemented in photovoltaic (PV)-battery systems to extend the battery lifespan and improve the overall performance of the system.