Latha Krishnamoorthy
SSAHE University

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

An ensemble approach for electrocardiogram and lip features based biometric authentication by using grey wolf optimization Latha Krishnamoorthy; Ammasandra Sadashivaiah Raju
Indonesian Journal of Electrical Engineering and Computer Science Vol 33, No 3: March 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v33.i3.pp1524-1535

Abstract

In the pursuit of fortified security measures, the convergence of multimodal biometric authentication and ensemble learning techniques have emerged as a pivotal domain of research. This study explores the integration of multimodal biometric authentication and ensemble learning techniques to enhance security. Focusing on lip movement and electrocardiogram (ECG) data, the research combines their distinct characteristics for advanced authentication. Ensemble learning merges diverse models, achieving increased accuracy and resilience in multimodal fusion. Harmonizing lip and ECG modalities establishes a robust authentication system, countering vulnerabilities in unimodal methods. This approach leverages ECG's robustness against spoofing attacks and lip's fine-grained behavioral cues for comprehensive authentication. Ensemble learning techniques, from majority voting to advanced methods, harness the strengths of individual models, improving accuracy, reliability, and generalization. Moreover, ensemble learning detects anomalies, enhancing security. The study incorporates ECG signal filtering and lip region extraction as preprocessing, uses wavelet transform for ECG features, SIFT for lip image features, and employs greywolf optimization for feature selection. Ultimately, a voting-based ensemble classifier is applied for classification, showcasing the potential of this integrated approach in fortified security measures.