Sushil K. Ambhore
Executive President-Director of TISSA Technology

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Multimodal approach for early prediction of COVID-19 disease using convolutional neural network Milind Ankleshwar; Pramod Chavan; Pratibha Chavan; Sushil K. Ambhore
Indonesian Journal of Electrical Engineering and Computer Science Vol 33, No 2: February 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v33.i2.pp1196-1204

Abstract

The latest human coronavirus is COVID-19. Chest radiography imaging is essential for screening, early detection, and monitoring COVID-19 infections since the virus resides in the lungs. Classical real time reverse transcriptase polymerase chain reaction (RT-PCR) data and chest X-ray pictures will become more important for COVID-19 identification as the pandemic spreads due to their affordability, wide availability, and infection control benefits, which reduce cross-contamination. This work presents multi-modal hybrid automated approaches to classify COVID-19 illness into three clinical categories: normal, pathogenic, and COVID-19 utilising RT-PCR test data and online chest X-ray datasets. The RT-PCR and chest X-ray image datasets were processed using supervised machine learning and convolutional neural networks (CNN). Together, these measures help us separate COVID-19 patients, those with similar symptoms, and healthy persons. The author improved detection times and classification accuracy with extra tree classifier’s feature selection and openCV’s image sharpening. The proposed approaches were tested using a research dataset. The proposed methods allowed reliable COVID-19 disease categorization for clinical decision-making, with random forest (RF) classifier global precision values of 91.58% on the RT-PCR dataset and CNN model accuracy of 95.46% on improved sharpened images.