Radhakrishnan Murugesan
Annamacharya Institute of Technology and Sciences

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Indonesian Journal of Electrical Engineering and Computer Science

Deep neural network with fuzzy algorithm to improve power and traffic-aware reliable reactive routing Radhakrishnan Murugesan; Satish Kanapala; Subash Rajendran; Prathaban Banu Priya; Rathinasabapathy Ramadevi; Natarajan Duraichi; Rengaraj Hema
Indonesian Journal of Electrical Engineering and Computer Science Vol 33, No 1: January 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v33.i1.pp380-388

Abstract

In wireless networks, link breaks, and restricted resources create fundamental challenges for maintaining network applications. Several wireless network routing techniques concentrate on power efficiency to expand the network lifetime, but the traffic and reliability parameters are not the primary concern. Though, these techniques are not capable of dealing with the wireless network. Hence, this paper proposes deep neural network (DNN) with a fuzzy algorithm to improve power and traffic-aware reliable reactive routing (PTAR) in wireless networks. The wireless network is formed by clustering by the node power and selects the cluster head (CH) based on a fuzzy algorithm. The wireless node power level, node buffer space, and node reliability to consider the input parameters of the fuzzy system. Then thefuzzy algorithm gives the output for CH round length. This selected CH improves the node reliability, power efficiency with minimized network congestion. Then we use a DNN algorithm to choose an optimal relay by applying an adaptive load balance factor in the network. DNN is a machine learning algorithm, and it provides high accuracy. From the simulation results, the PTAR approach improves the network performance, such as packet received ratio, delay, residual energy, and routing overhead.