Ahmad Wiraputra Selamat
Sultan Idris Education University

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Machine learning approaches for predicting postpartum hemorrhage: a comprehensive systematic literature review Dewi Pusparani Sinambela; Bahbibi Rahmatullah; Noor Hidayah Che Lah; Ahmad Wiraputra Selamat
Indonesian Journal of Electrical Engineering and Computer Science Vol 34, No 3: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v34.i3.pp2087-2095

Abstract

Postpartum hemorrhage (PPH) represents a significant threat to maternal health, particularly in developing countries, where it remains a leading cause of maternal mortality. Unfortunately, only 60% of pregnant women at high risk for PPH are identified, leaving 40% undetected until they experience PPH. To address this critical issue and ensure timely intervention, leveraging rapidly advancing technology with machine learning (ML) methodologies for maternal health prediction is imperative. This review synthesizes findings from 43 selected research articles, highlighting the predominant ML techniques employed in PPH prediction. Among these, logistic regression (LR), extreme gradient boosting (XGB), random forest (RF), and decision tree (DT) emerge as the most frequently utilized methods. By harnessing the power of ML, we aim to foster technological advancements in the healthcare sector, with a particular focus on maternal health and ultimately contribute to the reduction of maternal mortality rates worldwide.