Fachri Ardiansyah
AMIKOM University Yogyakarta

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Identification of Lumpy Skin Disease in Cattle with Image Classification using the Convolutional Neural Network Method Thedjo Sentoso; Fachri Ardiansyah; Virginia Tamuntuan; Sabda Sastra Wangsa; Kusrini Kusrini; Kusnawi Kusnawi
Sistemasi: Jurnal Sistem Informasi Vol 13, No 3 (2024): Sistemasi: Jurnal Sistem Informasi
Publisher : Program Studi Sistem Informasi Fakultas Teknik dan Ilmu Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32520/stmsi.v13i3.2569

Abstract

One of the problems often faced by cattle farmers is related to diseases in their cattle where one of the cattle diseases whose transmission rate is very fast is Lumpy Skin Disease (LSD). Currently, to identify the health of livestock, especially in cattle, is still very dependent on experts and of course this takes time, resulting in delays in the prevention and treatment of diseases in cattle, especially this LSD disease. The Convolutional Neural Network (CNN) algorithm is one of the algorithms can used for image classification of cows whether the cow is healthy or Lumpy. The stages of this research start from problem identification, literature study, data collection, algorithm implementation, testing, and performance evaluation results of the algorithm on cattle disease data. In this research, testing was conducted using three architectures for CNN: VGG16, VGG19, and ResNet50. The results of the experiment showed that VGG16 was the most effective architecture compared to VGG19 and ResNet50, with a training accuracy of 95.31% and a loss value of 0.1292, as well as a testing accuracy of 96.88% and a loss value of 0.102.