Claim Missing Document
Check
Articles

Found 2 Documents
Search

Intelligent Hardware-Software Processing of High-Frequency Scanning Data Mukanova, Zhanna; Atanov, Sabyrzhan; Jamshidi, Mohammad
Journal of Robotics and Control (JRC) Vol 4, No 5 (2023)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v4i5.18915

Abstract

The constant emission of polluting gases is causing an urgent need for timely detection of harmful gas mixtures in the atmosphere. A method and algorithm of the determining spectral composition of gas with a gas analyzer using an artificial neural network (ANN) were suggested in the article. A small closed gas dynamic system was designed and used as an experimental bench for collecting and quantifying gas concentrations for testing the proposed method. This device was based on AS7265x and BMP180 sensors connected in parallel to a 3.3 V compatible Arduino Uno board via QWIIC. Experimental tests were conducted with air from the laboratory room, carbon dioxide (CO2), and a mixture of pure oxygen (O2) with nitrogen (N2) in a 9:1 ratio. Three ANNs with one input, one hidden and one output layer were built. The ANN had 5, 10, and 20 hidden neurons, respectively. The dataset was divided into three parts: 70% for training, 15% for validation, and 15% for testing. The mean square error (MSE) error and regression were analyzed during training. Training, testing, and validation error analysis were performed to find the optimal iteration, and the MSE versus training iteration was plotted. The best indicators of training and construction were shown by the ANN with 5 (five) hidden layers, and 16 iterations are enough to train, test and verify this neural network. To test the obtained neural network, the program code was written in the MATLAB. The proposed scheme of the gas analyzer is operable and has a high accuracy of gas detection with a given error of 3%. The results of the study can be used in the development of an industrial gas analyzer for the detection of harmful gas mixtures.
Enhancing internet of things security against structured query language injection and brute force attacks through federated learning Adamova, Aigul; Zhukabayeva, Tamara; Mukanova, Zhanna; Oralbekova, Zhanar
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 1: February 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i1.pp1187-1199

Abstract

The internet of things (IoT) encompasses various devices for monitoring, data collection, tracking people and assets, and interacting with other gadgets without human intervention. Implementing a system for predicting the development and assessing the criticality of detected attacks is essential for ensuring security in IoT interactions. This work analyses existing methods for detecting attacks, including machine learning, deep learning, and ensemble methods, and explores the federated learning (FL) method. The aim is to study FL to enhance security, develop a methodology for predicting the development of attacks, and assess their criticality in real-time. FL enables devices and the aggregation server to jointly train a common global model while keeping the original data locally on each client. We demonstrate the performance of the proposed methodology against structured query language (SQL) injection and brute force attacks using the CICIOT2023 dataset. We used accuracy and F1 score metrics to evaluate the effectiveness of our proposed methodology. As a result, the accuracy in predicting SQL injection reached 100%, and for brute force attacks, it reached 98.25%. The high rates of experimental results clearly show that the proposed FL-based attack prediction methodology can be used to ensure security in IoT interactions.