Claim Missing Document
Check
Articles

Found 3 Documents
Search

Disease Detection of Solanaceous Crops Using Deep Learning for Robot Vision Hidayah, A. H. Nurul; Ahmad Radzi, Syafeeza; Razak, Norazlina Abdul; Saad, Wira Hidayat Mohd; Wong, Y. C.; Naja, A. Azureen
Journal of Robotics and Control (JRC) Vol 3, No 6 (2022): November
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v3i6.15948

Abstract

Traditionally, the farmers manage the crops from the early growth stage until the mature harvest stage by manually identifying and monitoring plant diseases, nutrient deficiencies, controlled irrigation, and controlled fertilizers and pesticides. Even the farmers have difficulty detecting crop diseases using their naked eyes due to several similar crop diseases. Identifying the correct diseases is crucial since it can improve the quality and quantity of crop production. With the advent of Artificial Intelligence (AI) technology, all crop-managing tasks can be automated using a robot that mimics a farmer's ability. However, designing a robot with human capability, especially in detecting the crop's diseases in real-time, is another challenge to consider. Other research works are focusing on improving the mean average precision and the best result reported so far is 93% of mean Average Precision (mAP) by YOLOv5. This paper focuses on object detection of the Convolutional Neural Network (CNN) architecture-based to detect the disease of solanaceous crops for robot vision. This study's contribution involved reporting the developmental specifics and a suggested solution for issues that appear along with the conducted study. In addition, the output of this study is expected to become the algorithm of the robot's vision. This study uses images of four crops (tomato, potato, eggplant, and pepper), including 23 classes of healthy and diseased crops infected on the leaf and fruits. The dataset utilized combines the public dataset (PlantVillage) and self-collected samples. The total dataset of all 23 classes is 16580 images divided into three parts: training set, validation set, and testing set. The dataset used for training is 88% of the total dataset (15000 images), 8% of the dataset performed a validation process (1400 images), and the rest of the 4% dataset is for the test process (699 images). The performances of YOLOv5 were more robust in terms of 94.2% mAP, and the speed was slightly faster than Scaled-YOLOv4. This object detection-based approach has proven to be a promising solution in efficiently detecting crop disease in real-time.
Analysis of ANN and Fuzzy Logic Dynamic Modelling to Control the Wrist Exoskeleton Karis, Mohd Safirin; Kasdirin, Hyreil Anuar; Abas, Norafizah; Saad, Wira Hidayat Mohd; Zainudin, Muhammad Noorazlan Shah; Ali, Nursabilillah Mohd; Aras, Mohd Shahrieel Mohd
Journal of Robotics and Control (JRC) Vol 4, No 4 (2023)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v4i4.19299

Abstract

Human intention has long been a primary emphasis in the field of electromyography (EMG) research. This being considered, the movement of the exoskeleton hand can be accurately predicted based on the user's preferences. The EMG is a nonlinear signal formed by muscle contractions as the human hand moves and easily captured noise signal from its surroundings. Due to this fact, this study aims to estimate wrist desired velocity based on EMG signals using ANN and FL mapping methods. The output was derived using EMG signals and wrist position were directly proportional to control wrist desired velocity. Ten male subjects, ranging in age from 21 to 40, supplied EMG signal data set used for estimating the output in single and double muscles experiments. To validate the performance, a physical model of an exoskeleton hand was created using Sim-mechanics program tool. The ANN used Levenberg training method with 1 hidden layer and 10 neurons, while FL used a triangular membership function to represent muscles contraction signals amplitude at different MVC levels for each wrist position. As a result, PID was substituted to compensate fluctuation of mapping outputs, resulting in a smoother signal reading while improving the estimation of wrist desired velocity performance. As a conclusion, ANN compensates for complex nonlinear input to estimate output, but it works best with large data sets. FL allowed designers to design rules based on their knowledge, but the system will struggle due to the large number of inputs. Based on the results achieved, FL was able to show a distinct separation of wrist desired velocity hand movement when compared to ANN for similar testing datasets due to the decision making based on rules setting setup by the designer.
Ensemble Voting Regressor for Enhanced Prediction in EMG-Based Prosthetic Wrist Control Karis, Mohd Safirin; Kasdirin, Hyreil Anuar; Abas, Norafizah; Zainudin, Muhammad Noorazlan Shah; Ali, Nursabilillah Mohd; Saad, Wira Hidayat Mohd; Razlan, Zarina
Journal of Robotics and Control (JRC) Vol. 6 No. 4 (2025)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v6i4.26222

Abstract

Accurately capturing user motion intention is crucial for effective wrist control in myelectronic prosthetic hands. While various regression models have been explored to improve prediction performance, each presents specific limitations when used independently. This study proposes a novel ensemble learning approach that utilizes a Voting Regressor to combine the strengths of several regression models ANN, ANFIS, fuzzy logic, and their combinations (ANN-ANFIS, ANN-Fuzzy, ANFIS-Fuzzy, and ANN-ANFIS-Fuzzy) to improve predictive performance. Surface EMG signals were collected from the FCR and ECRL muscles at five contraction levels: 20%, 40%, 60%, 80%, and 100% MVC. These signals were used to predict wrist velocity, which was then validated using a SimMechanics based prosthetic hand model in MATLAB 2017a. The ensemble model outperformed all individual and combination models at four MVC levels; 20%, 40%, 60%, and 100%. However, at 80% MVC, a single model achieved superior performance. Based on the average performance gain at the four winning MVC levels, the ensemble method achieved an overall improvement of 11.38%. When applied to the prosthetic hand simulation, the ensemble model showed slight additional improvements in RMSE at each MVC level, highlighting the practical applicability of the approach. To assign optimal and objective weights to the contributing models, MCDM-WSM approach was applied. This method combined multiple evaluation metrics (RMSE, %NRMSE, MAE, R², and p-value) into a single composite score, leading to the final weighted regression equation: YVR-HG-wrist = (0.5163)YANN + (0.2367)YANFIS + (0.2470)YFuzzy. Furthermore, the ensemble model reduced reliance on additional control strategies such as PID tuning, as its improvements in RMSE were comparable to those typically achieved through PID-based compensation. These findings highlight the potential of a performance-weighted ensemble approach to provide more accurate, robust, and practical EMG-based prosthetic wrist control especially in real-time applications.