Claim Missing Document
Check
Articles

Found 3 Documents
Search

Cancer Treatment Precision Strategies Through Optimal Control Theory Abougarair, Ahmed J.; Oun, Abdulhamid A.; Sawan, Salah I.; Abougard, T.; Maghfiroh, H.
Journal of Robotics and Control (JRC) Vol 5, No 5 (2024)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v5i5.22378

Abstract

Lung cancer is a highly heterogeneous disease, with diverse genetic, molecular, and cellular drivers that can vary significantly between individual patients and even within a single tumor. Though combination therapy is becoming more common in the treatment of cancer, it can be challenging to predict how various treatment modalities will interact and what negative effects they may have on a patient's health, such as increased gastrointestinal toxicities, or neurological problems.   This paper aims to regulate immunity to tumor therapy by utilizing optimal control theory (OCT). This research suggests a malignant tumor model that can be regulated with a combination of immunological, vaccine, and chemotherapeutic therapy. The optimal control variables are employed to support the best possible treatment plan with the fewest potential side effects by reducing the production of new tumor cells and keeping the number of normal cells above the average carrying capacity. Also, the study addresses patient heterogeneity, individual variations in tumor biology, and immune responses for both young and old cancer patients. Finding the right doses for a treatment that works is the main goal. To do this, we conducted a comparative analysis of two optimum control approaches: the Single Network Adaptive Critic (SNAC) approach, which directly applies the notion of reinforcement learning to the essential conditions for optimality and the Linear Quadratic Regulator (LQR) methodology. Although the study's results show the promise of precision treatment plans, a number of significant obstacles must be overcome before these tactics can be successfully applied in clinical settings. It will be necessary to make considerable adjustments to the healthcare system's infrastructure in order to successfully offer personalized treatment regimens. This includes enhanced interdisciplinary care coordination methods, safe data management systems.
Deep Learning-Based Automated Approach for Classifying Bacterial Images Abougarair, Ahmed Jaber; Oun, Abdulhamid A.; Sawan, Salah I.; Ma’arif, Alfian
International Journal of Robotics and Control Systems Vol 4, No 2 (2024)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v4i2.1423

Abstract

Identifying and classifying bacterial species from microscopic images is crucial for medical applications like prevention, diagnosis, and treatment. However, because of their diversity and variability in appearance, manually classifying bacteria is difficult and time-consuming. This work suggests employing deep learning architecture to automatically categorize bacterial species in order to overcome these difficulties and raise the accuracy of bacterial species recognition. We have evaluated our suggested approach using the Digital Images of Bacteria Species (DIBaS), a publicly accessible resource of photographs of tiny bacteria.  This work uses a dataset that differs in terms of bacterial morphology, staining methods, and imaging circumstances. This paper aims to enhance the accuracy and reduce the computational requirements for Convolutional Neural Networks (CNN) based classification of bacterial species using GoogLeNet and AlexNet to train the models. This paper focuses on employing transfer learning to retrain pre-trained CNN models using a dataset consisting of 2000 images encompassing 12 distinct bacteria species known to be harmful to human health.  The concept of transfer learning was utilized to expedite the network's training process and enhance its categorization performance.  The results are promising, with the method achieving an accuracy of 98.7% precision, recall of 99.50%, and an F1-score of 99.45%   with classifier speed. Furthermore, the proposed bacteria classification approach demonstrated strong performance, irrespective of the size of the training data used.  This paper contributes by automating bacterial classification to facilitate faster and more accurate identification of bacterial species, which facilitates the treatment of infections and related diseases, in addition to monitoring public health, and promoting the wise use of antimicrobial drugs. To improve outcomes in the future, researchers can also integrate deep learning techniques with other machine learning methods.
Cancer Treatment Precision Strategies Through Optimal Control Theory Abougarair, Ahmed J.; Oun, Abdulhamid A.; Sawan, Salah I.; Abougard, T.; Maghfiroh, H.
Journal of Robotics and Control (JRC) Vol. 5 No. 5 (2024)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v5i5.22378

Abstract

Lung cancer is a highly heterogeneous disease, with diverse genetic, molecular, and cellular drivers that can vary significantly between individual patients and even within a single tumor. Though combination therapy is becoming more common in the treatment of cancer, it can be challenging to predict how various treatment modalities will interact and what negative effects they may have on a patient's health, such as increased gastrointestinal toxicities, or neurological problems.   This paper aims to regulate immunity to tumor therapy by utilizing optimal control theory (OCT). This research suggests a malignant tumor model that can be regulated with a combination of immunological, vaccine, and chemotherapeutic therapy. The optimal control variables are employed to support the best possible treatment plan with the fewest potential side effects by reducing the production of new tumor cells and keeping the number of normal cells above the average carrying capacity. Also, the study addresses patient heterogeneity, individual variations in tumor biology, and immune responses for both young and old cancer patients. Finding the right doses for a treatment that works is the main goal. To do this, we conducted a comparative analysis of two optimum control approaches: the Single Network Adaptive Critic (SNAC) approach, which directly applies the notion of reinforcement learning to the essential conditions for optimality and the Linear Quadratic Regulator (LQR) methodology. Although the study's results show the promise of precision treatment plans, a number of significant obstacles must be overcome before these tactics can be successfully applied in clinical settings. It will be necessary to make considerable adjustments to the healthcare system's infrastructure in order to successfully offer personalized treatment regimens. This includes enhanced interdisciplinary care coordination methods, safe data management systems.