Claim Missing Document
Check
Articles

Found 3 Documents
Search

Predicting SI Engine Performance Using Deep Learning with CNNs on Time-Series Data Hofny, Mohamed S.; Ghazaly, Nouby M.; Shmroukh, Ahmed N.; Abouelsoud, Mostafa
Journal of Robotics and Control (JRC) Vol 5, No 5 (2024)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v5i5.22558

Abstract

In this study, deep learning (DL) model is used to predict brake power (BP) of GX35-OHC 4-stroke, air-cooled, single-cylinder gasoline engine. The engine uses E15 (85% gasoline + 15% ethanol) as a fuel due to its high performance and low emissions. A convolutional neural networks (CNN) model is used on time-series data due to their ability to capture temporal patterns and relationships in sequential data, such as engine BP. While studying the performance of the network, it is found that the root mean squared error (RMSE) is 0.0007, explained variance score (EVS) is 0.9999, and mean absolute percentage error (MAPE) is 0.22%. Compared to traditional machine leaning methods, these metrics demonstrate the high accuracy and reliability of the model, confirming its effectiveness in predicting BP. Various performance curves are plotted such as comparing target and predicted values, regression plots (to indicate the generalization capability),  learning curve (to demonstrate the model's effective training progress and convergence), Bland-Altman plot (to show the convergence between the actual and predicted values), histogram and density plot (to show a close fit between predicted and actual values), density plot of actual and predicted outputs, and residual plot (to show randomly distributed errors). This high accuracy and reliability of this DL model help in effective real-time engine performance monitoring, and reducing emission levels, especially for the adoption and use of renewable fuels like E15.
Comparative Study of ANN and SVM Model Network Performance for Predicting Brake Power in SI Engines Using E15 Fuel Hofny, Mohamed S.; Ghazaly, Nouby M.; Shmroukh, Ahmed N.; Abouelsoud, Mostafa
International Journal of Robotics and Control Systems Vol 4, No 3 (2024)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v4i3.1429

Abstract

Currently, artificial neural networks (ANNs) and support vector machines (SVMs) are the most common applications of machine learning approaches.  In this study, a comparative study of ANN and SVM is presented to evaluate the performance of each model in predicting the brake power (BP) of GX35-OHC 4-stroke, air-cooled, single cylinder gasoline engine with E15 (15% ethanol + 85% gasoline) fuel. Two models are compared based on experimental dataset that has single output (BP) and five inputs, engine speed (S), engine torque (T), intake air temperature (Tair), intake air flow (Qair), and fuel consumption (ṁ). The samples were split into three sets: Training set (70%), Validation set (15%), and the Test set (15%) based on 60 samples. The results are compared through different graphs such as target vs actual values, regression plots, histograms of prediction errors, residual plots, learning curves, and error distributions. The results showed that SVM model is indicated to have lower RMSE (0.0044) and higher EVS (0.9953), while ANN is shown to have lower value of MAPE (1.51%). These results have significant implications for the use of ANN and SVM models in real-world applications that need gradual comprehensibility and model generalization. In addition, work done with the models outlined above should try and test them in other engines and operating conditions to demonstrate the model’s and performance.
Predicting SI Engine Performance Using Deep Learning with CNNs on Time-Series Data Hofny, Mohamed S.; Ghazaly, Nouby M.; Shmroukh, Ahmed N.; Abouelsoud, Mostafa
Journal of Robotics and Control (JRC) Vol. 5 No. 5 (2024)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v5i5.22558

Abstract

In this study, deep learning (DL) model is used to predict brake power (BP) of GX35-OHC 4-stroke, air-cooled, single-cylinder gasoline engine. The engine uses E15 (85% gasoline + 15% ethanol) as a fuel due to its high performance and low emissions. A convolutional neural networks (CNN) model is used on time-series data due to their ability to capture temporal patterns and relationships in sequential data, such as engine BP. While studying the performance of the network, it is found that the root mean squared error (RMSE) is 0.0007, explained variance score (EVS) is 0.9999, and mean absolute percentage error (MAPE) is 0.22%. Compared to traditional machine leaning methods, these metrics demonstrate the high accuracy and reliability of the model, confirming its effectiveness in predicting BP. Various performance curves are plotted such as comparing target and predicted values, regression plots (to indicate the generalization capability),  learning curve (to demonstrate the model's effective training progress and convergence), Bland-Altman plot (to show the convergence between the actual and predicted values), histogram and density plot (to show a close fit between predicted and actual values), density plot of actual and predicted outputs, and residual plot (to show randomly distributed errors). This high accuracy and reliability of this DL model help in effective real-time engine performance monitoring, and reducing emission levels, especially for the adoption and use of renewable fuels like E15.