This paper presents a comprehensive comparative study of several metaheuristic optimization algorithms with the aim of identifying the most effective method for solving well-established engineering design problems. The algorithms selected for this study include Sperm Swarm Optimization (SSO), Chernobyl Disaster Optimizer (CDO), Bermuda Triangle Optimizer (BTO), Marine Predators Algorithm (MPA), and Particle Swarm Optimization (PSO). These algorithms are tested and evaluated through both qualitative and quantitative analyses.The first phase of testing involves applying the algorithms to a set of benchmark functions from the Congress on Evolutionary Computation (CEC) 2017 suite. Key performance indicators such as best fitness value, standard deviation, and mean are used to measure solution quality, while convergence curves are analyzed to assess optimization efficiency over iterations. This allows for a robust evaluation of each algorithm's ability to balance exploration and exploitation in the search space. In the second phase, the algorithms are implemented to solve real-world engineering design problems, including Speed Reducer Design, Pressure Vessel Design, Cantilever Beam Design, and Robot Gripper Optimization. These case studies further validate the practical applicability and versatility of the algorithms in handling complex, multidimensional, and constrained optimization tasks. The results indicate varying levels of performance across different problems, highlighting the strengths and limitations of each method. This comparative insight provides valuable guidance for researchers and practitioners in selecting suitable optimization techniques for specific engineering challenges.