Arnold Adimabua Ojugo
Department of Computer Science, Federal University of Petroleum Resources Effurun, Delta State, Nigeria

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

RICE DISEASE RECOGNITION USING TRANSFER LEARNING XCEPTION CONVOLUTIONAL NEURAL NETWORK Ahmad Rofiqul Muslikh; De Rosal Ignatius Moses Setiadi; Arnold Adimabua Ojugo
Jurnal Teknik Informatika (Jutif) Vol. 4 No. 6 (2023): JUTIF Volume 4, Number 6, Desember 2023
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2023.4.6.1529

Abstract

As one of the major rice producers, Indonesia faces significant challenges related to plant diseases such as blast, brown spot, tugro, leaf smut, and blight. These diseases threaten food security and result in economic losses, underscoring the importance of early detection and management of rice diseases. Convolutional Neural Network (CNN) has proven effective in detecting diseases in rice plants. Specifically, transfer learning with CNN, particularly the Xception model, has the advantage of efficiently extracting automatic features and performing well even with limited datasets. This study aims to develop the Xception model for rice disease recognition based on leaf images. Through the fine-tuning process, the Xception model achieved accuracies, precisions, recalls, and F1-scores of 0.89, 0.90, 0.89, and 0.89, respectively, on a dataset with a total of 320 images. Additionally, the Xception model outperformed VGG16, MobileNetV2, and EfficientNetV2.