Vallent Austin Theasar Kurniawan
Universitas Muhammadiyah Malang

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

BRAIN TUMOR CLASSIFICATION USING INCEPTIONRESNET-V2 AND TRANSFER LEARNING APPROACH Vallent Austin Theasar Kurniawan; Elan Cahya Niswary; christian s.k.aditya; Didih Rizki Chandranegara
JITK (Jurnal Ilmu Pengetahuan dan Teknologi Komputer) Vol. 10 No. 1 (2024): JITK Issue August 2024
Publisher : LPPM Nusa Mandiri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33480/jitk.v10i1.5223

Abstract

Brain, a highly intricate organ within the central nervous system, plays a fundamental role in information processing, cognition, motor control, and consciousness. Brain tumors pose severe threats to brain function and overall human well-being. Timely detection of these tumors is imperative for life-saving interventions. A dataset comprising four categories: no tumors, meningioma tumors, glioma tumors, and pituitary tumors was regarded in this research. The employed of the InceptionResNet-V2 architecture combined with Transfer Learning and data augmentation proposed to obtain optimal results on brain tumor classification types. Transfer learning act as fine tuning, enabling the model to acquire fundamental low-level image features from a comprehensive dataset. It then leverages higher-level features to become more tailored to the specific training data. This method is employed to improve the model's adaptability to the training data. The InceptionResNet-V2 architecture utilized in the evaluation using test data, in Scenario 1, achieved 94.18% accuracy. Scenario 2, which combined augmentation with InceptionResNetV2, showed an improvement in accuracy to 95.10%. Furthermore, in Scenario 3, the combination of InceptionResNetV2 with Transfer Learning and augmentation resulted in an impressive accuracy of 96.63%, demonstrating its effectiveness in brain tumor classification. Transfer learning aligns the model by acquiring low-level image features and utilizing higher-level features to improve adaptability to the training data.