This Author published in this journals
All Journal Teknika
Yeni Kustiyahningsih
Program Studi Sistem Informasi, Universitas Trunojoyo, Madura, Jawa Timur

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Penggunaan Latent Dirichlet Allocation (LDA) dan Support-Vector Machine (SVM) Untuk Menganalisis Sentimen Berdasarkan Aspek Dalam Ulasan Aplikasi EdLink Yeni Kustiyahningsih; Yohan Permana
Teknika Vol 13 No 1 (2024): Maret 2024
Publisher : Center for Research and Community Service, Institut Informatika Indonesia (IKADO) Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34148/teknika.v13i1.746

Abstract

EdLink merupakan salah satu platform mobile berbasis Android yang telah dirancang khusus untuk mendukung pengalaman belajar di dunia pendidikan. Platform ini menawarkan berbagai fitur konten pembelajaran interaktif, tugas online, dan diskusi. EdLink telah menjadi salah satu aplikasi yang banyak diminati dan digunakan di berbagai instansi pendidikan, termasuk perguruan tinggi. Aplikasi EdLink saat ini memiliki rating 3,7 di Google Play Store. Banyak pengguna mengeluhkan berbagai aspek, seperti fitur yang kurang lengkap, pelayanan, dan kinerja. Dalam penelitian ini, digunakan analisis sentimen berbasis aspek untuk mengevaluasi aplikasi. Data ulasan yang digunakan adalah seluruh ulasan aplikasi EdLink di Google Play Store dari versi 1.1.6 hingga 4.7.8, dengan jumlah 2014 ulasan. Penelitian ini dilakukan dengan pemodelan topik Latent Dirichlet Allocation (LDA) dengan tujuan untuk menentukan aspek serta analisis sentimen menggunakan Support Vector Machine (SVM) dengan pendekatan Lexicon Based. Penelitian ini menghasilkan tiga aspek utama, yaitu Application Usability, Reliability, dan Performance Efficiency. Berdasarkan model LDA menghasilkan skor koherensi tertinggi 0,487 dan berdasarkan distribusi jumlah topik dan skor koherensi tertinggi dari num topic 1-10 adalah 3. Kemudian, labeling Lexicon Based menghasilkan 418 jumlah ulasan positif dan 1.223 ulasan negatif. Selanjutnya, klasifikasi SVM dengan rasio pembagian data 90:10 menghasilkan akurasi tertinggi 85,45% kemudian dilakukan resampling dengan hasil akurasi tertinggi 90,00% menggunakan SMOTE. Berdasarkan aspek dan sentimen dihasilkan 319 ulasan negatif dan 127 ulasan positif untuk aspek Usability, 482 ulasan negatif, dan 120 ulasan positif untuk aspek Reliability, serta 422 ulasan negatif dan 171 ulasan positif untuk aspek Performance Efficiency.