Sri Mulyani
Jurusan Statistika, Fakultas Sains Terapan, Institut Sains & Teknologi AKPRIND Yogyakarta

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

PERBANDINGAN FUNGSI AKTIVASI LINEAR, ReLU, SIGMOID, DAN TANSIG PADA ELM UNTUK PERAMALAN HARGA SAHAM Sri Mulyani; Rokhana Dwi Bekti; Noviana Pratiwi
Jurnal Statistika Industri dan Komputasi Vol. 9 No. 1 (2024): Jurnal Statistika Industri dan Komputasi
Publisher : Program Studi Statistika, Fakultas Sains dan Teknologi Informasi, Universitas AKPRIND Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34151/statistika.v9i1.4844

Abstract

PT. Bank Central Asia Tbk (BBCA.JK) sebagai emiten sektor perbankan masih menempati posisi pertama sebagai emiten dengan kapitalisasi terbesar, dan saham teraktif di BEI. Berinvestasi di pasar saham mengikuti prinsip “high risk, high return, low risk, low return”. Itu sebabnya investor harus mencermati harga saham di masa depan. Salah satu cara memprediksi harga saham adalah dengan menggunakan metode Extreme Learning Machine (ELM). Hal ini melibatkan pemilihan dan pengaturan fungsi aktivasi yang memperkenalkan non-linearitas, memungkinkan jaringan saraf memodelkan hubungan kompleks antara input dan output. Hasil pengujian menunjukkan ELM optimal untuk memprediksi harga saham BBCA menggunakan fungsi aktivasi Sigmoid, inisialisasi bobot Uniform Positive, arsitektur jaringan yang terdiri dari 5 neuron input layer, 14 neuron hidden layer, dan 1 output layer. MAPE yang diperoleh sebesar 3.374546 < 10%, menunjukkan bahwa model dapat digeneralisasikan dengan baik, dengan rata-rata kecepatan pembelajaran sebesar 0.000343442 detik.