This Author published in this journals
All Journal Teknika
Yudha Dwi Putra Negara
Jurusan Teknik Informatika, Fakultas Teknik, Universitas Trunojoyo, Madura, Jawa Timur

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Implementasi Metode Naive Bayes dan Information Gain Untuk Klasifikasi Penyakit dan Hama Tanaman Jagung Eza Rahmanita; Yudha Dwi Putra Negara; Yeni Kustiyahningsih; Verdi Sasmeka; Bain Khusnul Khotimah
Teknika Vol 12 No 3 (2023): November 2023
Publisher : Center for Research and Community Service, Institut Informatika Indonesia (IKADO) Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34148/teknika.v12i3.684

Abstract

Jagung (Zea mays ssp. mays) adalah tanaman pangan ketiga terbesar setelah gandum dan beras, dan di Indonesia menempati posisi kedua setelah padi. Jagung dapat ditanam di daerah dengan suhu tinggi dan rendah serta curah hujan dan irigasi yang cukup. Namun jagung sangat rentan terhadap penyakit selama siklus hidupnya, yang dapat menurunkan kualitas dan kuantitasnya. Di Sumenep, Jagung dapat dikatakan sebagai bahan pangan pokok untuk sebagian masyarakat pedesaan atau pelosok. Penyebab terjadinya serangan pada tanaman jagung adalah ketidaktahuan petani dalam pencegahan dan penanganannya sehingga menyebabkan produksi jagung mengalami penurunan. Dinas pertanian kabupaten Sumenep juga belum mempunyai sistem untuk klasifikasi hama dan penyakit jagung. Tujuan penelitian ini adalah klasifikasi penyakit dan hama tanaman jagung menggunakan metode naive bayes dengan information gain. Naive Bayes digunakan untuk mengolah nilai-nilai probabilitas setiap gejala, dan nilai persentase dari setiap hama dan penyakit. Information Gain untuk menyeleksi bobot gejala yang paling berpengaruh dalam menentukan hama dan penyakit jagung. Hasil uji coba, akurasi naive bayes dengan information gain dapat meningkatkan akurasi rata-rata sebesar 3,17 % dibanding klasifikasi tanpa seleksi fitur. Akurasi terbaik diperoleh dengan metode information gain dan naive bayes sebanyak 15 fitur dari 47 fitur dengan akurasi sebesar 98,47 %. Penelitian ini merekomendasikan 15 fitur, dengan 3 fitur terbesar adalah tidak berbuah, daun berklorosis sebagian atau seluruh daun dan adanya bekas gigitan pada batang.