Fiki Andrianto
Ahmad Dahlan University

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Non-linear Kernel Optimisation of Support Vector Machine Algorithm for Online Marketplace Sentiment Analysis Abdul Fadlil; Imam Riadi; Fiki Andrianto
JUITA: Jurnal Informatika JUITA Vol. 12 No. 1, May 2024
Publisher : Department of Informatics Engineering, Universitas Muhammadiyah Purwokerto

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30595/juita.v12i1.19798

Abstract

Twitter is a social media platform that is very important in the digital world. Fast communication and interaction make Twitter a vital information center in sentiment analysis. The purpose of this research is to classify public opinion about the presence of marketplaces in Indonesia, both positive and negative sentiments, using a Non-linear SVM algorithm based on 1276 tweets. This research involves the stages of data pre-processing, labeling, feature extraction using TF-IDF, and data division into three scenarios: 80% training data and 20% test data, 50% training data and 50% test data scenario, and 20% training data and 80% test data scenario. The last process, GridSearchCV, combines cross-validation and non-linear SVM parameters for model evaluation using a confusion matrix. The best SVM model resulting from the scenario was 80% training and 20% test data, with hyperparameters Gamma = 100 and C = 0.01, achieving 89% accuracy. When tested on never-before-seen data, the accuracy increased to 90%, with an f1-score of 91%, precision of 88%, and recall of 95% on negative sentiments. In conclusion, evaluating the performance of non-linear SVM kernels with a combination of hyperparameter values can improve accuracy, especially on public response information about online marketplaces and public sentiment.