Muhammad Nurul Huda
Department of Mathematics, Universitas Gadjah mada, Indonesia

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

A note on hamiltonicity conditions of the coprime and non-coprime graphs of a finite group Muhammad Nurul Huda
Jurnal Matematika UNAND Vol 13, No 3 (2024)
Publisher : Departemen Matematika dan Sains Data FMIPA Universitas Andalas Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jmua.13.3.157-162.2024

Abstract

Let $G$ be a group. The coprime and non-coprime graphs of $G$ are introduced by Ma et al. (2014) and Mansoori et al. (2016), respectively, when $G$ is finite. By their definitions, which refer to coprime and non-coprime terms of two positive integers, those graphs must be related. We prove that they are closely related through their graph complement and preserve the isomorphism groups. Furthermore, according to Cayley's theorem, which states that any group $G$ is isomorphic to a subgroup of the symmetric group on $G$, it implies that the studies of the coprime and non-coprime graphs of any group $G$ (especially, when $G$ is finite) can actually be represented by the coprime and non-coprime graphs of any subgroup of the symmetric group on $G$. This encourages us to specifically study the hamiltonicity of both kinds of graphs associated with $G$ when $G$ is isomorphic to the symmetric group on $G$.