Lennox Larwuy
Universitas Kristen Satya Wacana

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Optimasi Parameter Artificial Neural Network (ANN) Menggunakan Particle Swarm Optimization (PSO) Untuk Pengkategorian Nasabah Bank: Optimasi Parameter Artificial Neural Network (ANN) Menggunakan Particle Swarm Optimization (PSO) Lennox Larwuy
Jurnal Matematika Komputasi dan Statistika Vol. 3 No. 3 (2023): September-Desember
Publisher : Jurusan Matematika FMIPA Universitas Halu Oleo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33772/jmks.v3i3.60

Abstract

Artificial Neural Network (ANN), also known as Jaringan Saraf Tiruan, is one of the methods commonly used for pattern recognition, classification, forecasting, and regression, depending on the problem or data used. While the results obtained are generally good, there are often issues with determining the initial parameters as the initial weights, which can lead to non-convergence of results. This is why a method is needed to optimize the ANN parameters to achieve better outcomes. Particle Swarm Optimization (PSO) was chosen as the method to optimize the ANN parameters (PSO-ANN). The best parameter values for PSO were predefined, with w (inertia weight) set to 0.8 and c1 and c2 (acceleration coefficients) set to 1.5. Subsequently, PSO-ANN was trained using a bank customer dataset to determine the categories of customers with credit problems or not. The results were compared with using ANN without parameter optimization. The obtained results showed an Accuracy rate of 82.6%, Precision of 91.1%, and Recall of 37.1%. This represents an improvement compared to the results of ANN without parameter optimization, which had an Accuracy rate of 80.1%, Precision of 89.5%, and Recall of 32.4%.
Analisis Empiris dari Variasi Kontinu dan Lompatan dalam Model Threshold GARCH dengan Ukuran Realized Nugroho, Didit Budi; Hanafi, Fika Maula; Puspitasari, Agnes Dhika; Tita, Faldy; Larwuy, Lennox
Limits: Journal of Mathematics and Its Applications Vol 21, No 3 (2024)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/limits.v21i3.20426

Abstract

Volatilitas adalah ukuran fluktuasi harga aset keuangan yang tak terpisahkan dari dinamika pasar, tidak hanya sebagai indikator risiko tetapi juga sebagai sumber informasi tentang peluang dan ketidakpastian bagi investor. Pendekatan utama dalam mengukur risiko pasar keuangan yaitu dengan pemodelan dan estimasi volatilitas. Studi ini fokus pada pemodelan volatilitas menggunakan kerangka Threshold Generalized Autoregressive Conditional Heteroskedasticity (TGARCH). Pertama kali ini mengkonstruksi model TGARCH-X dan Realized TGARCH (RealTGARCH) yang memperhatikan ukuran Realized Volatility (RV) sebagai variabel eksogen. Selanjutnya, model tersebut dikembangkan menjadi model TGARCH-CJ dan RealTGARCH-CJ dengan cara mendekomposisi komponen RV menjadi komponen kontinu dan lompatan. Analisis empiris didasarkan pada hasil estimasi model menggunakan metode Adaptive Random Walk Metropolis untuk data Tokyo Stock Price Index (TOPIX) Jepang. Perbandingan pencocokan model menunjukkan keunggulan yang signifikan untuk model-model dengan komponen kontinu dan lompatan. Dengan pengaplikasian ukuran RV interval waktu 1 dan 5 menit, model terbaik diberikan oleh RealTGARCH-CJ yang mengadopsi ukuran RV 1 menit.