Kyung Hoon Lee
Research Institute, Ballys Co. Ltd, Incheon-22219

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Elephantopus scaber Linn. Leaf Extract Sensitizes Doxorubicin in Inducing Apoptosis in HSC-3 Tongue Cancer Cells through Inhibiting Survivin Activity at Thr34 Ferry Sandra; Ria Aryani Hayuningtyas; Dewi Ranggaini; Tiffany Pang; Alifah Evi Scania; Kyung Hoon Lee
The Indonesian Biomedical Journal Vol 16, No 4 (2024)
Publisher : The Prodia Education and Research Institute (PERI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18585/inabj.v16i4.3096

Abstract

BACKGROUND: Previous research has demonstrated the effect of Elephantopus scaber Linn. leaf extract (ESLE) on various cancer cell lines. However, research on the effects of ESLE on oral squamous cell carcinoma (OSCC), especially tongue cancer, is still lacking. Moreover, the apoptotic mechanisms induced by ESLE are not well understood and require further exploration. Therefore, this study was conducted to investigate the effects of ESLE on cell viability and apoptosis in human squamous cell carcinoma (HSC)-3 tongue cancer cells.METHODS: HSC-3 cells were treated with varying concentrations of ESLE, doxorubicin, and a combination of both. Cell viability and apoptosis were assessed using MTT and Sub-G1 assays. The expression levels of survivin and its phosphorylated form at threonine (Thr)34 were evaluated using Western blot analysis.RESULTS: ESLE exhibited a concentration-dependent cytotoxic effect on HSC-3 cells in decreasing cell viability (Kruskal Wallis, p=0.001) and increasing apoptotic cells (ANOVA, p=0.001) significantly. When combined with doxorubicin, ESLE further enhanced the induction of apoptosis compared with doxorubicin alone. The combined treatment resulted in a decrease in the levels of phosphorylated survivin (p-Surv) Thr34, indicating the inhibition of survivin's anti-apoptotic function.CONCLUSION: ESLE significantly enhances the efficacy of doxorubicin, thereby sensitizing its ability to induce apoptosis in HSC-3 tongue cancer cells. This sensitization occurs through the inhibition of survivin activity, particularly at the Thr34 phosphorylation site. These findings suggest that ESLE could serve as a potential adjuvant to improve the effectiveness of doxorubicin in inducing apoptosis in tongue cancer cells.KEYWORDS: Elephantopus scaber, doxorubicin, tongue cancer, HSC-3 cells, apoptosis, Survivin, Thr34 phosphorylation
Stenochlaena palustris Ethanol Extract Decreases Viability and Induces G1-Phase Cell Cycle Arrest in HSC-3 Tongue Cancer Cells via p21 and p27 Ferry Sandra; Dewi Ranggaini; Johni Halim; Elizabeth Yuliani Taramalinda; Alifah Evi Scania; Boedi Oetomo Roeslan; Kyung Hoon Lee
The Indonesian Biomedical Journal Vol 16, No 5 (2024)
Publisher : The Prodia Education and Research Institute (PERI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18585/inabj.v16i5.3308

Abstract

BACKGROUND: Oral squamous cell carcinoma (OSCC) of the tongue is an aggressive cancer with a poor prognosis due to its resistance to standard treatments. Stenochlaena palustris, a medicinal fern containing bioactive compounds, has shown potential anticancer properties. However, there is a lack of studies addressing the effects of S. palustris ethanol extract (SPEE) on tongue cancer. This study examined the effects of SPEE on the cell viability and cell cycle of human squamous cell carcinoma (HSC)-3 tongue cancer cells.METHODS: SPEE was prepared with the maceration method. HSC-3 cells were treated with SPEE at concentrations of 100, 500, and 1000 µg/mL for 24 and 48 hours. Cell viability was measured with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cell cycle analysis was performed using flow cytometer. Immunoblotting was used to measure amount of cell cycle regulators, protein 21 (p21) and protein 27 (p27).RESULTS: SPEE treatment led to a significant decrease in HSC-3 viable cells in a concentration- and time-dependent manner, with the most pronounced effect at higher concentration and prolonged treatment time. There was a slightly increase in the percentage of cells in the Sub-G1 phase in SPEE-treated group, meanwhile there was a significant increase in the percentage of cells in the G1-phase. Increased amount of p21 and p27 were observed in SPEE-treated group.CONCLUSION: SPEE significantly inhibited HSC-3 cell proliferation in a concentration- and time-dependent manner, primarily by inducing G1-phase cell cycle arrest through the upregulation of p21 and p27. Taken together, SPEE could be a potential anti-cancer agent for tongue cancer cell. KEYWORDS: Stenochlaena palustris, tongue cancer, cytotoxic, cell cycle arrest, HSC-3 cells, p21, p27