Muhamad Asep Ridwan
Universitas Siliwangi

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

The The Recognition of American Sign Language Using CNN with Hand Keypoint Muhamad Asep Ridwan; Aradea; Husni Mubarok
International Journal on Information and Communication Technology (IJoICT) Vol. 9 No. 2 (2023): Vol.9 No. 2 Dec 2023
Publisher : School of Computing, Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Sign Language is a method used by the deaf community for their communication. In line with the advances of deep learning, researchers have widely interpreted neural networks for language recognition in recent years. Many models and hardware have been developed to help get high accuracy in language recognition, but generally, the problem of accuracy is still a concern of researchers, even the accuracy problem related to American language or American sign language (ASL) still requires further research to solve. This paper discusses a method to improve ASL recognition accuracy using Convolutional Neural Network (CNN) with hand keypoint. Pre-trained Keypoint detector is used to generate hand keypoints on the massey dataset as an input for classification in the CNN model. The results show that the accuracy of the proposed method is better than the previous studies, obtaining an accuracy of 99.1% in recognizing the 26 statistical signs of the ASL alphabet.