Claim Missing Document
Check
Articles

Found 2 Documents
Search

The Optimization of Credit Scoring Model Using Stacking Ensemble Learning and Oversampling Techniques Rofik, Rofik; Aulia, Reza; Musaadah, Khalimah; Ardyani, Salma Shafira Fatya; Hakim, Ade Anggian
Journal of Information System Exploration and Research Vol. 2 No. 1 (2024): January 2024
Publisher : shmpublisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52465/joiser.v2i1.203

Abstract

Credit risk assessment plays an important role in efficient and safe banking decision-making. Many studies have been conducted to analyze credit scoring with a focus on achieving high accuracy. However, predicting credit scoring decisions also requires model construction that handles class imbalance and proper model implementation. This research aims to increase the accuracy of credit assessment by balancing data using Synthetic Minority Oversampling (SMOTE) and applying ensemble stacking learning techniques. The proposed model utilizes a base learner consisting of Random Forest, SVM, Extra-Tree Classifier, and XGboost as a meta-learner. Then to handle unbalanced classes using SMOTE. The research process was carried out in several stages, namely Data Collection, Preprocessing, Oversampling, Modeling, and Evaluation. The model was tested using the German Credit dataset by applying cross-validation. The evaluation results show that the stacking ensemble learning model developed has optimal performance, with an accuracy of 83.21%, precision of 79.29%, recall of 91.78%, and f1-score of 85.08%. This research shows that optimizing the stacking ensemble learning model with data balancing using SMOTE in credit scoring can improve performance in credit scoring.
Milkfish Freshness Detection Based On Eye Images Using Convolutional Neural Network (CNN) With Mobilenetv3 Architecture On A Mobile Application Musaadah, Khalimah; Afuan, Lasmedi; Permadi, Ipung
Journal of Electronics Technology Exploration Vol. 3 No. 2 (2025): December 2025
Publisher : SHM Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52465/joetex.v3i2.649

Abstract

Indonesia has abundant fishery resources, making it one of the world's largest producers and consumers of fish. One of the most commonly consumed types is milkfish (Chanos chanos). Before consumption, it is important to determine the freshness level of the fish. This freshness can be identified using a Convolutional Neural Network (CNN) model with the MobileNetV3 architecture, which is efficient and suitable for mobile application implementation. This study aims to detect the freshness level of milkfish based on eye images using the MobileNetV3 CNN architecture implemented in a mobile application. The dataset used consists of 500 images, divided into training, validation, and testing sets with proportions of 70%, 20%, and 10%, respectively. The data underwent preprocessing, including resizing and image augmentation, to increase data variation. The model was developed using hyperparameter tuning with both random search and grid search methods. The results show that random search achieved better performance with a training accuracy of 92.88%, validation accuracy of 89.90%, and an overall test accuracy of 91%. The trained model was successfully implemented into a mobile application named ScanBang, which can classify the freshness level of milkfish and display its confidence score in a practical and user-friendly manner.