Claim Missing Document
Check
Articles

Found 2 Documents
Search

Implementation of the CNN Deep Learning Method in Tajong (Sarung) Samarinda Classification Muhartini, Sitti; Sunyoto, Andi; Muhammad, Alva Hendi
Journal of Applied Sciences, Management and Engineering Technology Vol 5, No 2 (2024)
Publisher : Institut Teknologi Adhi Tama Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31284/j.jasmet.2024.v5i2.6406

Abstract

Samarinda sarongs are one of Indonesia's traditional fabrics that are famous for their beautiful motifs and textures. This fabric is made using traditional weaving techniques using non-machine looms (ATBMs), resulting in a unique and distinctive diversity of textures. The difference between the loom, namely the machine and the non-machine, resulting in a difference in the texture of the Samarinda sarong. This difference can be seen from the thread density, texture smoothness, and sharpness of the motif. On certain Samarinda sarong motifs that do not require special details. This study aims to develop a classification model of Samarinda sarong texture based on the loom (machine and non-machine) using the Deep Learning method. This model is expected to help, increase the selling value of Samarinda sarongs, preserve and promote traditional fabrics In this context, the choice between DenseNet121 and VGG16 can depend on user preferences or specific needs, such as computing speed or model size.
Implementasi Metode Deep Learning CNN Dalam Klasifikasi Tajong (Sarung) Samarinda Muhartini, Sitti; Sunyoto, Andi; Muhammad, Anva Hendi
Jurnal SENOPATI : Sustainability, Ergonomics, Optimization, and Application of Industrial Engineering Vol 6, No 1 (2024): Jurnal SENOPATI Vol 6, No 1
Publisher : Institut Teknologi Adhi Tama Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31284/j.senopati.2024.v6i1.6573

Abstract

Samarinda sarongs are one of Indonesia's traditional fabrics that are famous for their beautiful motifs and textures. This fabric is made using traditional weaving techniques using non-machine looms (ATBMs), resulting in a unique and distinctive diversity of textures. The difference between the loom, namely the machine and the non-machine, resulting in a difference in the texture of the Samarinda sarong. This difference can be seen from the thread density, texture smoothness, and sharpness of the motif. On certain Samarinda sarong motifs that do not require special details. This study aims to develop a classification model of Samarinda sarong texture based on the loom (machine and non-machine) using the Deep Learning method. This model is expected to help, increase the selling value of Samarinda sarongs, preserve and promote traditional fabrics In this context, the choice between DenseNet121 and VGG16 can depend on user preferences or specific needs, such as computing speed or model size.