Yusuf, Anisa Haura Salsa Fatih
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Penerapan Model Regresi Hurdle Binomial Negatif Menggunakan Algoritma Broyden-Fletcher-Goldfarb-Shanno pada Data Jumlah Kematian Bayi di Kota Makassar Tahun 2017 Yusuf, Anisa Haura Salsa Fatih; Jaya, Andi Kresna; Sahriman, Sitti
ESTIMASI: Journal of Statistics and Its Application Vol. 5, No. 1, Januari, 2024 : Estimasi
Publisher : Hasanuddin University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20956/ejsa.v5i1.22749

Abstract

Poisson regression is a nonlinear regression method used to analyse the relationship between discrete response variables. Equidispersion is the assumption that must be met in the Poisson regression. Furthermore, there are cases in which the equidispersion assumption is invalidated when using the Poisson regression model to analyze data. One such case is overdispersion, which occurs when there is an excess of zero. As a result, the Negative Hurdle Binomial (HBN) regression is implemented to solve the overdispersion issue. Maximum Likelihood Estimation (MLE) with the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm was applied in this study to perform parameter estimation. In addition, the HBN regression model was used to analyze the data on the number of infant mortality cases in Makassar in 2017 with the variables assumed to be significant with infant mortality. The percentage of infants who were exclusively breastfed was the variable that had a significant impact on the outcome of HBN regression on the data on the number of infant mortality that experienced overdispersion.