Claim Missing Document
Check
Articles

Found 1 Documents
Search

Implementasi Backpropagation Neural Network Pada Status Preeklampsia Ibu Hamil Sapriani; Bobby Poerwanto; Aswi
Jurnal MSA (Matematika dan Statistika serta Aplikasinya) Vol 11 No 2 (2023): VOLUME 11 NO 2 TAHUN 2023
Publisher : Universitas Islam Negeri Alauddin Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24252/msa.v11i2.40657

Abstract

Preeklampsia adalah penyakit yang diderita ibu hamil yang ditandai adanya kenaikan tekanan darah. Preeklampsia dapat membahayakan ibu dan juga janin karena dapat menyebabkan komplikasi, hingga kondisi terburuk yaitu kematian. Tujuan dari penelitian ini adalah untuk mengetahui hasil klasifikasi sekaligus prediksi berdasarkan lima variabel yang diduga mempengaruhi status preeklampsia ibu hamil. dengan menggunakan metode Backpropagation Neural Network (BNN). Data rekam medis ibu hamil di RSIA Sitti Khadijah 1 Makassar dan RS TK II Pelamonia Makassar yang berjumlah 167 data digunakan pada penelitian ini. Terdapat lima variabel yang diduga mempengaruhi status preeklampsia ibu hamil yaitu usia ibu saat kehamilan, paritas, riwayat penyakit, indeks massa tubuh, dan status pekerjaan ibu. Hasil studi menghasilkan bahwa skenario pembagian data terbaik yaitu data training 80% dan data testing 20% dengan hasil akurasi sebesar 67,65%, sensitifitas 69,23%, spesifikasi 66,67%, presisi 56,25%, Score 62,07%, nilai hidden layer 7 dan learning rate 0,001.