Claim Missing Document
Check
Articles

Found 3 Documents
Search

PENGARUH VARIASI KUAT ARUS LISTRIK DAN WAKTU PROSES ANODIZING PADA ALUMUNIUM TERHADAP LAJU KOROSI DALAM MEDIA LARUTAN GARAM Agustriyana , Lisa; Puspito Buwono, Haris; Sulistyono
Jurnal Teknik Ilmu dan Aplikasi Vol. 1 No. 2 (2020): Jurnal Teknik Ilmu dan Aplikasi
Publisher : Politeknik Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (530.539 KB)

Abstract

Alumunium merupakan material yang digunakan secara luas di industri karena keunggulan karakteristik yang dimilikinya dibandingkan material lain, hal ini karena Alumunium dikenal sebagai material yang ringan, memiliki kemampuan cor, mampu machining serta ketahanan terhadap korosi akibat lapisan oksida yang baik pada permukaannya. Beberapa komponen yang terbuat dari bahan Alumunium dan bekerja pada lingkungan yang abrasif maupun korosif menyebabkan material tersebut cenderung lebih cepat aus. Proses tersebut disebabkan oleh rusaknya lapisan Alumunium oksida pada permukaan Alumunium. Besarnya rapat arus mempengaruhi besarnya laju korosi logam Alumunium pada media garam sebagai contoh pada larutan NaCl dengan konsentrasi 1% rapat arus 0,01A/cm2 memberikan pengaruh laju korosi yang paling tinggi dan rapat arus 0,005 A/cm2 memiliki laju korosi yang paling rendah. Lamanya waktu proses anodizing juga memberikan pengaruh terhadap besarnya laju korosi logam Alumunium, dimana semakin lama proses anodizing menunjukkan rata-rata laju korosi semakin tinggi. Konsentrasi larutan garam juga mempengaruhi laju korosi logam Alumunium dimana besar laju korosi lebih tinggi ketika berada pada konsentrasi larutan yang semakin tinggi pula.
Investigation of the Influence of Warhead Shape and Type of Missile Weapon Material Counter-Training Tank Weapons Simulation Approach Budiarta, Transisma; Puspito Buwono, Haris; Nurvian Amrullah, Radhi
Journal of Mechanical Engineering Science and Technology (JMEST) Vol 9, No 1 (2025)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um016v9i12025p039

Abstract

This study analyzes the effect of warhead shape and material variations on pressure, temperature, and lift on training missiles using CAD-based simulation methods. The variations of warhead shapes tested include flat, flat radius, and tapered, while the materials used are rubber, ABS, and PE. The simulation results show that the tapered warhead shape with PE material produces the lowest pressure (50.3 MPa) due to more efficient pressure release and low friction properties. Conversely, the Flat shape produces the highest pressure (69.1 MPa) on all materials due to flow stagnation. In terms of temperature, the Flat Radius warhead with PE and Rubber materials has the lowest temperature (~335.56 K) due to flow expansion and low thermal conductivity, while the Tapered warhead with PE has the highest temperature (336.07 K) due to increased fluid velocity, which causes an adiabatic effect. In terms of lift, the tapered warhead with rubber shows the highest value (72.397) due to interaction with the turbulent boundary layer, while the flat radius warhead with rubber has the lowest lift (67.420) due to faster flow separation. These results can be applied in the optimization pf training missile design, jet warhead systems, and aerodynamic vehicles. Further development can include the exploration of alternative materials and the integration of advanced simulation technologies to improve the aerodynamic efficiency and durability of materials.
Effect of Increased Molecular Force Attraction of NiO (Nickel Oxide) on the Kinetic and Potential Energy of H2O Molecules for Efficient H2O Splitting into H2 Gas Walid, Achmad; Puspito Buwono, Haris; Agustryana, Lisa; Nurhadi, Nurhadi
Journal of Evrímata: Engineering and Physics Vol. 02 No. 01, 2024
Publisher : PT. ELSHAD TECHNOLOGY INDONESIA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.70822/journalofevrmata.vi.33

Abstract

Nickel oxide (NiO) is a material used due to its remarkable chemical stability, magnetic properties, and electrical characteristics molecules. One notable feature of NiO is its unreactive surface with water (H2O), making it an ideal candidate for use as a cathode in the electrolysis process to produce hydrogen (H2) gas. During electrolyte process, H2 is produced through the oxidation reaction at the anode and the reduction reaction at the cathode. Despite its potential, the detailed mechanism of H2O molecule decomposition using a NiO electrode remains inadequately explained. This research aims to elucidate the increased energy arising from the attractive forces between NiO and H2O molecules. To investigate these attractive forces, simulations were conducted to understand the chemical characteristics of the molecules, including bond lengths, bond angles, and their properties. The results indicated that the use of NiO electrode could increase the potential and kinetic energy of H2O molecules. This energy increase is attributed to the formation of specific polar and non-polar bonds. Specifically, polar bonds were formed between (1) the nickel (Ni) atom in NiO molecules and the oxygen (O) atom in the H2O molecules and (2) the O atom in NiO molecules and the H atom in the H2O molecules. Non-polar bonds were formed between (1) the H atom in the H2O molecules and the Ni atom in NiO molecules, and (2) the O atom in NiO molecules and the O atom in H2O molecules. This study highlights how these interactions help in the electrolysis process by enabling the efficient breakdown of water molecules and the production of hydrogen gas