Claim Missing Document
Check
Articles

Found 2 Documents
Search

OPTIMALISASI DEKARBONISASI DENGAN INTEGRASI SOLID OXIDE FUEL CELL (SOFC) GAS TURBINE COMBINED CYCLE DAN OXY-ITM DENGAN ANALISIS SEKUESTRASI KARBON: STUDI KASUS LAPANGAN “ZT” Alik Sangga, Arya Abraham; Baiti, Aisah Nur
Jurnal Offshore: Oil, Production Facilities and Renewable Energy Vol. 7 No. 1 (2023): Jurnal Offshore: Oil, Production Facilities and Renewable Energy
Publisher : Proklamasi 45 University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30588/jo.v7i1.1567

Abstract

Permintaan energi dunia yang bersumber dari energi fosil meningkat seiring dengan pesatnya pertumbuhan penduduk dan GDP, khususnya di sektor industri dan transportasi. Karbon dioksida (CO2) hasil pembakaran gas alam pada pembangkit listrik adalah salah satu kontributor utama pemanasan global. Menurut Paris Agreement 2015, pengurangan emisi karbon merupakan bagian dari kebijakan beberapa perusahaan energi. Di era sekarang sekuestrasi karbon tengah gencar dilakukan, dimana 2200 gigaton CO2 global telah berhasil diinjeksikan kembali kedalam formasi geologi. Oxy-fuel adalah salah satu teknologi pembakaran gas alam yang bersih untuk penangkapan CO2. Namun, kerugian dari air separation unit (ASU) adalah konsumsi daya yang besar untuk memisahkan oksigen. Penelitian ini bertujuan mengintegrasikan solid oxide fuel cell (SOFC)/GTCC dengan oxy ion transport membrane (Oxy-ITM) untuk mengurangi pinalti energi, mentranspor CO2 dalam keadaan supercritical dan menganalisis sekuestrasi karbon pada formasi Arang Atas. Metode yang digunakan dalam penelitian ini adalah analisis kualitatif berdasarkan studi literatur penelitian sebelumnya dan analisis kuantitatif. Sistem ini memiliki net efficiency 7,8% lebih tinggi daripada sistem Oxy-ASU, memiliki kemurnian karbon dioksida yang ditangkap 97,5%, dan capture rate CO2 sebesar 99,9%. Berdasarkan hasil perhitungan indikator ekonomi berupa NCF yang didapatkan 3.546,11, dan NPV didapatkan 1.338,91, POR didapatkan 26,03 %, PIR 2,1, DPIR 1,8 dan POT yang 3,3 tahun. Analisis dari indikator ekonomi didapatkan nilai POR yang lebih dari 12%, dan pay out timr (POT) yang cepat yaitu pada 3,3 tahun, serta nilai POR, PIR, DPIR yang menunjukan nilai yang lebih positif. Efeknya, penelitian ini akan bermanfaat bagi industri sebagai solusi untuk menentukan pendekatan teknologi yang sesuai untuk menangani karbon.
Innovation in Hydraulic Fracturing Technology Using Ctafs in Production Optimization Strategy in Unconventional Reservoir Barnett Shale: A Geology and Rock Physics Based Approach Pratama, Fauzan Abiyyu; Nugraha, Fanata Yudha; Baiti, Aisah Nur; Damayanti, Nabila Zafira
Journal of Earth Energy Science, Engineering, and Technology Vol. 8 No. 2 (2025): JEESET VOL. 8 NO. 2 2025
Publisher : Penerbitan Universitas Trisakti

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25105/xsetaz66

Abstract

The Barnett Shale is the largest unconventional hydrocarbon-producing rock formation in the United States. It consists of shale rocks with high-density mineral content such as smectite, silica, and carbonate, which result in low permeability and porosity. Hydraulic fracturing utilizing the coiled tubing activated frac sleeve completion system (CTAFS) is employed to enhance hydrocarbon production by fracturing the formation. The application of hydraulic fracturing can significantly boost production from the Barnett Shale. To optimize this method, geological analysis and rock physics properties are essential to derive parameters such as predictions of Young’s modulus and Poisson’s ratio in the exploration area. This study uses a systematic review approach based on previous research, supported by secondary data instrumentation including rock core validation and well data digitization, which are subsequently modeled into rock physics parameters. The rock physics model is used to simulate the elastic properties of the rock formation, considering the matrix, constituent composition, and rock heterogeneity. Furthermore, hydraulic fracturing simulations are conducted to predict production and determine the resulting strategies. The research findings indicate that in the interval 10,650–10,725 ft of the EnerGeo1 well, kerogen volumetrics are 18%, quartz 38%, clay 35%, and calcite 15%. The Young’s modulus value is 39.5 GPa, and the Poisson’s ratio is 25.2%, categorizing it as Type 1. In the interval 10,725–10,803 ft, kerogen volumetrics are 18%, quartz 32%, clay 41%, and calcite 16%. The Young’s modulus value is 37.1 GPa, and the Poisson’s ratio is 24.8%, categorizing it as Type 2. In the interval 10,803–10,880 ft, kerogen volumetrics are 19.6%, quartz 41%, clay 31%, and calcite 11%. The Young’s modulus value is 43.3 GPa, and the Poisson’s ratio is 26.6%, categorizing it as Type 3. The data reveals that Type 3 rocks are more suitable for hydraulic fracturing compared to Type 1. Meanwhile, Type 2 rocks are identified as being suitable for placing horizontal wells due to the clay and calcite matrix, which can prevent formation collapse. It can be concluded that integrating geological and rock physics data can yield a more efficient and innovative fracturing design, resulting in a production increase of up to 129% compared to previous production levels.