Claim Missing Document
Check
Articles

Found 3 Documents
Search

Impregnation Effect of Synthesized Fe3O4 Nanoparticles on the Jabon Wood’s Physical Properties Rahayu, Istie Sekartining; Ismail, Rohmat; Darmawan, Wayan; Wahyuningtyas, Irma; Prihatini, Esti; Laksono, Gilang Dwi; Khairunissa, Dhiya
International Journal of Recent Technology and Applied Science (IJORTAS) Vol 6 No 2: September 2024
Publisher : Lamintang Education and Training Centre, in collaboration with the International Association of Educators, Scientists, Technologists, and Engineers (IA-ESTE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36079/lamintang.ijortas-0602.701

Abstract

This study focused on characterizing synthetic magnetite (Fe3O4-NP) and evaluating the impregnated jabon wood’s physical properties. The co-precipitation method used for the synthesis of Fe3O4-NP, namely by mixing the iron solution (n/n Fe2+:Fe3+=1:2) with the strong base of sodium hydroxide (NaOH) (MG-S) and weak base of ammonium hydroxide (NH4OH) (MG-W) as precursors. The impregnation stage uses parameters of a -0.5 bar vacuum for half an hour and 2 bar pressure for 2 hours with magnetite concentrations of 1; 2.5; 5% w/v in a demineralized water solvent. Scanning electron microscopy-energy dispersive x-ray spectroscopy (SEM-EDX) and Fourier transform infrared spectrometry (FTIR) confirmed the presence of Ferrum content and Fe-O functional group in both Fe3O4-NPs produced. The Fe3O4-NP size was also measured via the X-ray diffraction analysis, namely 34.54 nm for the MG-S and 39.24 nm for the MG-W. Magnetic strength obtained was 7.51 mT for the MG-S and 8.58 mT for the MG-W. The impregnated jabon wood’s physical properties also improved with indications of an increase in wood density, weight percent gain (WPG), bulking effect (BE), anti-swelling efficiency (ASE), and a decrease in water absorption (WA). The results showed the best treatments were MG-S 2.5% and MG-W 5%.
Compatibility Testing of Synthesized TiO2 Nanoparticles on The Fast-Growing Wood Physical Properties Prihatini, Esti; Ismail, Rohmat; Sekartining Rahayu, Istie; Dwi Laksono, Gilang; Khairunissa, Dhiya
Sains Natural: Journal of Biology and Chemistry Vol. 14 No. 2 (2024): Sains Natural
Publisher : Universitas Nusa Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31938/jsn.v14i2.611

Abstract

Jabon wood (Anthochepalus cadamba) has inferior quality, so it is necessary to modify the wood to improve the quality of its physical properties, namely by impregnating TiO2 nanoparticles (NP-TiO2). This study aims to determine the right synthesis method for the synthesis of NP-TiO2 so as to improve the quality of the physical properties of jabon wood optimally. The results of FTIR testing showed that jabon wood has successfully impregnated NP-TiO2 by hydrothermal and solvothermal methods with ethanol, acetone, and methanol solvents with the identification of the functional group of Ti-O at wavenumber 533 cm-1 and the Ti-O-Ti functional group at wavenumber 679 cm-1 which is the bond formed in the framework of the TiO2 compound. The results of the physical properties test showed that NP-TiO2 which was successfully impregnated into wood was synthesized using hydrothermal and solvothermal methods, namely acetone, methanol, and ethanol, with a WPG value of 1.36%, 2.6%, 2.16%, and 1.61%, respectively. XRD test results show that jabon wood has successfully impregnated NP-TiO2 by hydrothermal and solvothermal methods using acetone, ethanol, and methanol solvents with the identification of anatase TiO2 crystal lattice and crystal sizes of 16.21, 15.94, 14.27, dan 15.75 nm, respectively.
Characteristics and Applications of Bionanosilica from Betung Bamboo Leaves Esti Prihatini; Dwi Laksono, Gilang; Khairunissa, Dhiya; Rahayu, Istie; Ismail, Rohmat
Journal of Engineering, Technology, and Applied Science (JETAS) Vol 6 No 3: December 2024
Publisher : Lamintang Education and Training Centre, in collaboration with the International Association of Educators, Scientists, Technologists, and Engineers (IA-ESTE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36079/lamintang.jetas-0603.766

Abstract

Nanoparticles are materials that are currently widely used in research due to their novelty and the growing number of suitable applications. Silica nanoparticles can be produced by synthesizing using several methods such as melting, coprecipitation, sol-gel, and ultrasonication. The aim of this study is to determine the most appropriate synthesis method for the production of SiO₂ nanoparticles to optimize the quality of physical properties of fast-growing wood. The synthesis of SiO2 nanoparticles used in this study utilized three different methods: acid isolation method (F1), sol-gel method (F2), and reflux method (F3). Characterization of SiO2-NPs was performed using particle size analyzer (PSA), X-ray diffraction analysis (XRD), and Fourier transform infrared spectroscopy (FTIR). The results of PSA analysis showed that the acid isolation method produced the smallest SiO2 particle size compared to the sol-gel and reflux methods. The zeta pontential value in each method shows that the particles produced are unstable because the potential zeta value produced is around -10 mV to -30 mV. The results of FTIR and XRD analysis show that the synthesized material is a SiO₂ compound with a cristobalite phase. Application of the material on jabon wood through impregnation showed an improvement in physical properties, including an increase in WPG, density, and BE, especially in the sol-gel method (F2).