Claim Missing Document
Check
Articles

Found 4 Documents
Search

Optimasi K-Nearest Neighbor Dengan Particle Swarm Optimization Untuk Klasifikasi Idiopathic Thrombocytopenic Purpura Alfirdausy, Roudlotul Jannah; Aliyyah, Izzatul; Fanani, Aris
Komputika : Jurnal Sistem Komputer Vol. 13 No. 1 (2024): Komputika: Jurnal Sistem Komputer
Publisher : Computer Engineering Departement, Universitas Komputer Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34010/komputika.v13i1.10436

Abstract

ABSTRACT – Immune Thrombocytopenic Purpura (ITP) is a hematological disease caused by autoimmune damage to platelets, causing a person to bruise easily or bleed excessively. ITP disease must be detected early because it can cause chronic or long-term disorders, so this study aims to classify ITP disease in order to avoid misdiagnosis of patients and can be treated and treated immediately. This classification uses the PSO-KNN combination method. The results obtained from the classification using the PSO-KNN combination method are an accuracy value of 91.8% with an increase of 4.9% from the KNN standard, a sensitivity value of 91.2% with an increase of 11.8% from the KNN standard, and a specificity value of 92.6% with a decrease of 3.7% from the KNN standard. % The training and testing time of PSO-KNN is also faster than standard KNN so that PSO is able to optimize and improve the classification results of KNN.
Implementation of The Extreme Gradient Boosting Algorithm with Hyperparameter Tuning in Celiac Disease Classification Alfirdausy, Roudlotul Jannah; Ulinnuha, Nurissaidah; Utami, Wika Dianita
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol 24 No 1 (2024)
Publisher : LPPM Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/matrik.v24i1.4031

Abstract

Celiac Disease (CeD) is an autoimmune disorder triggered by gluten consumption and involves the immune system and HLA in the intestine. The global incidence ranges from 0.5%-1%, with only 30% correctly diagnosed. Diagnosis remains challenging, requiring complex tests like blood tests, small bowel biopsy, and elimination of gluten from the diet. Therefore, a faster and more efficient alternative is needed. Extreme Gradient Boosting (XGBoost), an ensemble machine learning technique that utilizes decision trees to aid in the classification of Celiac disease, was used. The aim of this study was to classify patients into six classes, namely potential, atypical, silent, typical, latent and none disease, based on attributes such as blood test results, clinical symptoms and medical history. This research method employs 5-fold cross-validation to optimize parameters that are max depth, n estimator, gamma, and learning rate. Experiments were conducted 96 times to get the best combination of parameters. The results of this research are highlighted by an improvement of 0.45% above the accuracy value with the default XGBoost parameter of 98.19%. The best model was obtained in the trial with parameters max depth of 3, n estimator of 100, gamma of 0, and learning rate of 0.3 and 0.5 after modifying the parameters, yielding an accuracy rate of 98.64%, a sensitivity rate of 98.43%, and a specificity rate of 99.72%. This research shows that tuning the XGBoost parameters for Celiac
Implementation of The Extreme Gradient Boosting Algorithm with Hyperparameter Tuning in Celiac Disease Classification Alfirdausy, Roudlotul Jannah; Ulinnuha, Nurissaidah; Utami, Wika Dianita
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol. 24 No. 1 (2024)
Publisher : Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/matrik.v24i1.4031

Abstract

Celiac Disease (CeD) is an autoimmune disorder triggered by gluten consumption and involves the immune system and HLA in the intestine. The global incidence ranges from 0.5%-1%, with only 30% correctly diagnosed. Diagnosis remains challenging, requiring complex tests like blood tests, small bowel biopsy, and elimination of gluten from the diet. Therefore, a faster and more efficient alternative is needed. Extreme Gradient Boosting (XGBoost), an ensemble machine learning technique that utilizes decision trees to aid in the classification of Celiac disease, was used. The aim of this study was to classify patients into six classes, namely potential, atypical, silent, typical, latent and none disease, based on attributes such as blood test results, clinical symptoms and medical history. This research method employs 5-fold cross-validation to optimize parameters that are max depth, n estimator, gamma, and learning rate. Experiments were conducted 96 times to get the best combination of parameters. The results of this research are highlighted by an improvement of 0.45% above the accuracy value with the default XGBoost parameter of 98.19%. The best model was obtained in the trial with parameters max depth of 3, n estimator of 100, gamma of 0, and learning rate of 0.3 and 0.5 after modifying the parameters, yielding an accuracy rate of 98.64%, a sensitivity rate of 98.43%, and a specificity rate of 99.72%. This research shows that tuning the XGBoost parameters for Celiac
Analysis of Regency/City Human Development Index Data in East Java Through Grouping Using Hierarchical Agglomerative Clustering Method Alfirdausy, Roudlotul Jannah; Ulinnuha, Nurissaidah; Hafiyusholeh, Moh.
Sistemasi: Jurnal Sistem Informasi Vol 12, No 3 (2023): Sistemasi: Jurnal Sistem Informasi
Publisher : Program Studi Sistem Informasi Fakultas Teknik dan Ilmu Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32520/stmsi.v12i3.2959

Abstract

The evaluation of human development is typically done using the Human Development Index (HDI), which measures the level of development in terms of various essential aspects of quality of life. In the case of East Java, the HDI is categorized as high. However. the distribution of HDI among the Regencies/Cities in East Java is still uneven. Therefore, it becomes necessary to cluster the districts/cities based on their HDI and the achievement of each indicator contributing to the HDI. Clustering is a data analysis technique used to group similar data together. Hierarchical agglomerative clustering is one of the methods used for this purpose. The aim of this study is to provide a reference for the government to understand the distribution of characteristic groupings among the districts/cities based on their HDI profiles in East Java. The analysis of East Java's HDI data for 2021 revealed that the best method and cluster was obtained using Average Linkage, with a Cophenetic coefficient value of 0.8105891, resulting in two clusters. The cluster with the highest Silhouette coefficient value of 0.6196077 comprised 34 districts/cities, classified as the low cluster, while the high cluster consisted of four cities/regencies.