Claim Missing Document
Check
Articles

Found 2 Documents
Search

Investigasi Model Machine Learning Terbaik untuk Memprediksi Kemampuan Penghambatan Korosi oleh Senyawa Benzimidazole Akrom, Muhamad; Sumarjono, Cornellius Adryan Putra; Trisnapradika, Gustina Alfa
Komputika : Jurnal Sistem Komputer Vol. 13 No. 1 (2024): Komputika: Jurnal Sistem Komputer
Publisher : Computer Engineering Departement, Universitas Komputer Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34010/komputika.v13i1.11048

Abstract

This research aims to investigate the corrosion inhibition performance of Benzimidazole compounds using a machine learning (ML) approach. The main challenge in developing ML is to obtain a model with high accuracy so that the prediction results are relevant and accurate to the actual properties of a material. In this research, we evaluate various linear and non-linear algorithms to obtain the best model. Based on the coefficient of determination (R2) and root mean square error (RMSE) metrics, it was found that the AdaBoost Regressor (ADA) model was the model with the best predictive performance in predicting the corrosion inhibition performance of benzimidazole compounds. This approach offers a new perspective on the ability of ML models to predict effective corrosion inhibitors.
Perbandingan Model Machine Learning Terbaik untuk Memprediksi Kemampuan Penghambatan Korosi oleh Senyawa Benzimidazole Sumarjono, Cornellius Adryan Putra; Akrom, Muhamad; Trisnapradika, Gustina Alfa
Techno.Com Vol. 22 No. 4 (2023): November 2023
Publisher : LPPM Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33633/tc.v22i4.9201

Abstract

Penelitian ini merupakan studi eksperimen untuk melakukan penyelidikan inhibitor korosi oleh senyawa Benzimidazole dengan melakukan pendekatan machine learning (ML). Karena korosi menyebabkan banyak kerugian yang timbul karena kehilangan material konstruksi, keselamatan kerja dan pencemaran lingkungan akibat produk korosi dalam bentuk senyawa yang mencemarkan lingkungan. Melakukan pendekatan ML adalah untuk mendapatkan model akurasi yang terbaik sehingga dapat digunakan untuk memprediksi dengan relevan dan akurat terhadap suatu material. Dalam penelitian ini, kami mengevaluasi algoritma ML dengan metode linear dan nonlinear dengan menggunakan metode k-fold cross-validation untuk membantu dalam mengukur performa model ML. Mengacu pada metrik coefficient of determination (R2) dan root mean square error (RMSE), kami menyimpulkan bahwa model AdaBoost regressor (ADA) merupakan model dengan performa prediksi terbaik dari eksperimen yang kami lakukan dari literatur untuk dataset senyawa benzimidazole. Keberhasilan model penelitian ini menawarkan perspektif baru tentang kemampuan model ML untuk memprediksi penghambat korosi yang efektif.